Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
Adv Mater. 2018 May;30(22):e1707459. doi: 10.1002/adma.201707459. Epub 2018 Apr 20.
Many viruses have a lipid envelope derived from the host cell membrane that contributes much to the host specificity and the cellular invasion. This study puts forward a virus-inspired technology that allows targeted genetic delivery free from man-made materials. Genetic therapeutics, metal ions, and biologically derived cell membranes are nanointegrated. Vulnerable genetic therapeutics contained in the formed "nanogene" can be well protected from unwanted attacks by blood components and enzymes. The surface envelope composed of cancer cell membrane fragments enables host-specific targeting of the nanogene to the source cancer cells and homologous tumors while effectively inhibiting recognition by macrophages. High transfection efficiency highlights the potential of this technology for practical applications. Another unique merit of this technology arises from the facile combination of special biofunction of metal ions with genetic therapy. Typically, Gd(III)-involved nanogene generates a much higher T relaxation rate than the clinically used Gd magnetic resonance imaging agent and harvests the enhanced MRI contrast at tumors. This virus-inspired technology points out a distinctive new avenue for the disease-specific transport of genetic therapeutics and other biomacromolecules.
许多病毒都有一层源自宿主细胞膜的脂质包膜,这对宿主特异性和细胞入侵有很大的贡献。本研究提出了一种受病毒启发的技术,可实现无需人造材料的靶向基因传递。将遗传治疗药物、金属离子和生物衍生的细胞膜进行纳米整合。形成的“纳米基因”中包含的脆弱遗传治疗药物可以很好地免受血液成分和酶的不必要攻击。由癌细胞膜片段组成的表面包膜使纳米基因能够针对源癌细胞和同源肿瘤进行特异性靶向,同时有效抑制巨噬细胞的识别。高转染效率突出了该技术在实际应用中的潜力。该技术的另一个独特优点源于金属离子的特殊生物功能与基因治疗的简便结合。通常,涉及 Gd(III)的纳米基因产生的 T1 弛豫率比临床使用的 Gd 磁共振成像剂高得多,并在肿瘤处获得增强的 MRI 对比。这种受病毒启发的技术为遗传治疗药物和其他生物大分子的疾病特异性运输指出了一条独特的新途径。