Chemistry Department , Sapienza University of Rome , Piazzale Aldo Moro, 5 , 00185 Rome , Italy.
Ph.D. Program in Physics , City University of New York , New York , New York 10016 , United States.
ACS Appl Mater Interfaces. 2018 May 16;10(19):16367-16375. doi: 10.1021/acsami.7b19544. Epub 2018 May 3.
The lithium oxygen battery has a theoretical energy density potentially meeting the challenging requirements of electric vehicles. However, safety concerns and short lifespan hinder its application in practical systems. In this work, we show a cell configuration, including a multiwalled carbon nanotube electrode and a low flammability glyme electrolyte, capable of hundreds of cycles without signs of decay. Nuclear magnetic resonance and electrochemical tests confirm the suitability of the electrolyte in a practical battery, whereas morphological and structural aspects revealed by electron microscopy and X-ray diffraction demonstrate the reversible formation and dissolution of lithium peroxide during the electrochemical process. The enhanced cycle life of the cell and the high safety of the electrolyte suggest the lithium oxygen battery herein reported as a viable system for the next generation of high-energy applications.
锂氧电池具有理论上的能量密度,有望满足电动汽车的挑战性要求。然而,安全性问题和短寿命阻碍了其在实际系统中的应用。在这项工作中,我们展示了一种包括多壁碳纳米管电极和低可燃性甘醇电解质的电池结构,该电池能够在数百个循环中无衰减迹象。核磁共振和电化学测试证实了电解质在实际电池中的适用性,而电子显微镜和 X 射线衍射揭示的形态和结构方面则表明,在电化学过程中,过氧化锂可以可逆地形成和溶解。电池的循环寿命得到了提高,电解质的安全性也得到了提高,这表明本文报道的锂氧电池是下一代高能应用的可行系统。