Suppr超能文献

离子扩散对锂氧电化学过程的影响以及使用碳纳米管-石墨烯基底的电池应用

Influence of Ion Diffusion on the Lithium-Oxygen Electrochemical Process and Battery Application Using Carbon Nanotubes-Graphene Substrate.

作者信息

Levchenko Stanislav, Marangon Vittorio, Bellani Sebastiano, Pasquale Lea, Bonaccorso Francesco, Pellegrini Vittorio, Hassoun Jusef

机构信息

Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17, Ferrara 44121, Italy.

Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy.

出版信息

ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39218-39233. doi: 10.1021/acsami.3c05240. Epub 2023 Aug 8.

Abstract

Lithium-oxygen (Li-O) batteries are nowadays among the most appealing next-generation energy storage systems in view of a high theoretical capacity and the use of transition-metal-free cathodes. Nevertheless, the practical application of these batteries is still hindered by limited understanding of the relationships between cell components and performances. In this work, we investigate a Li-O battery by originally screening different gas diffusion layers (GDLs) characterized by low specific surface area (<40 m g) with relatively large pores (absence of micropores), graphitic character, and the presence of a fraction of the hydrophobic PTFE polymer on their surface (<20 wt %). The electrochemical characterization of Li-O cells using bare GDLs as the support indicates that the oxygen reduction reaction (ORR) occurs at potentials below 2.8 V vs Li/Li, while the oxygen evolution reaction (OER) takes place at potentials higher than 3.6 V vs Li/Li. Furthermore, the relatively high impedance of the Li-O cells at the pristine state remarkably decreases upon electrochemical activation achieved by voltammetry. The Li-O cells deliver high reversible capacities, ranging from ∼6 to ∼8 mA h cm (referred to the geometric area of the GDLs). The Li-O battery performances are rationalized by the investigation of a practical Li diffusion coefficient () within the cell configuration adopted herein. The study reveals that is higher during ORR than during OER, with values depending on the characteristics of the GDL and on the cell state of charge. Overall, values range from ∼10 to ∼10 cm s during the ORR and ∼10 to ∼10 cm s during the OER. The most performing GDL is used as the support for the deposition of a substrate formed by few-layer graphene and multiwalled carbon nanotubes to improve the reaction in a Li-O cell operating with a maximum specific capacity of 1250 mA h g (1 mA h cm) at a current density of 0.33 mA cm. XPS on the electrode tested in our Li-O cell setup suggests the formation of a stable solid electrolyte interphase at the surface which extends the cycle life.

摘要

鉴于锂氧(Li-O)电池具有高理论容量以及使用无过渡金属阴极的特点,它们如今是最具吸引力的下一代储能系统之一。然而,对电池组件与性能之间关系的理解有限,仍然阻碍着这些电池的实际应用。在这项工作中,我们通过最初筛选不同的气体扩散层(GDL)来研究锂氧电池,这些气体扩散层具有低比表面积(<40 m²/g)、相对较大的孔隙(无微孔)、石墨特性以及表面存在一部分疏水性聚四氟乙烯聚合物(<20 wt%)。使用裸露的GDL作为支撑体对锂氧电池进行电化学表征表明,氧还原反应(ORR)在相对于Li/Li低于2.8 V的电位下发生,而析氧反应(OER)在相对于Li/Li高于3.6 V的电位下发生。此外,锂氧电池在原始状态下相对较高的阻抗在通过伏安法实现的电化学活化后显著降低。锂氧电池具有高可逆容量,范围从约6至约8 mA h/cm²(相对于GDL的几何面积)。通过研究本文采用的电池配置内的实际锂扩散系数(),对锂氧电池的性能进行了合理化分析。研究表明,ORR期间的扩散系数高于OER期间,其值取决于GDL的特性和电池的充电状态。总体而言,ORR期间的值范围为约10⁻¹⁰至约10⁻⁹ cm²/s,OER期间为约10⁻¹²至约10⁻¹¹ cm²/s。性能最佳的GDL用作沉积由少层石墨烯和多壁碳纳米管形成的基底的支撑体,以改善在电流密度为0.33 mA/cm²、最大比容量为1250 mA h/g(1 mA h/cm²)下运行的锂氧电池中的反应。在我们的锂氧电池装置中测试的电极上进行的X射线光电子能谱(XPS)表明,在表面形成了稳定的固体电解质界面,从而延长了循环寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b985/10450645/a63a82382959/am3c05240_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验