Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
J Am Chem Soc. 2011 Aug 24;133(33):13121-9. doi: 10.1021/ja203983r. Epub 2011 Aug 2.
The oxidative stability of glyme molecules is enhanced by the complex formation with alkali metal cations. Clear liquid can be obtained by simply mixing glyme (triglyme or tetraglyme) with lithium bis(trifluoromethylsulfonyl)amide (Li[TFSA]) in a molar ratio of 1:1. The equimolar complex [Li(triglyme or tetraglyme)(1)][TFSA] maintains a stable liquid state over a wide temperature range and can be regarded as a room-temperature ionic liquid consisting of a Li(glyme)(1) complex cation and a TFSA anion, exhibiting high self-dissociativity (ionicity) at room temperature. The electrochemical oxidation of [Li(glyme)(1)][TFSA] takes place at the electrode potential of ~5 V vs Li/Li(+), while the oxidation of solutions containing excess glyme molecules ([Li(glyme)(x)][TFSA], x > 1) occurs at around 4 V vs Li/Li(+). This enhancement of oxidative stability is due to the donation of lone pairs of ether oxygen atoms to the Li(+) cation, resulting in the highest occupied molecular orbital (HOMO) energy level lowering of a glyme molecule, which is confirmed by ab initio molecular orbital calculations. The solvation state of a Li(+) cation and ion conduction mechanism in the [Li(glyme)(x)][TFSA] solutions is elucidated by means of nuclear magnetic resonance (NMR) and electrochemical methods. The experimental results strongly suggest that Li(+) cation conduction in the equimolar complex takes place by the migration of Li(glyme)(1) cations, whereas the ligand exchange mechanism is overlapped when interfacial electrochemical reactions of Li(glyme)(1) cations occur. The ligand exchange conduction mode is typically seen in a lithium battery with a configuration of [Li anode|[Li(glyme)(1)][TFSA]|LiCoO(2) cathode] when the discharge reaction of a LiCoO(2) cathode, that is, desolvation of Li(glyme)(1) and insertion of the resultant Li(+) into the cathode, occurs at the electrode-electrolyte interface. The battery can be operated for more than 200 charge-discharge cycles in the cell voltage range of 3.0-4.2 V, regardless of the use of ether-based electrolyte, because the ligand exchange rate is much faster than the electrode reaction rate.
甘醇分子与碱金属阳离子形成配合物可提高其氧化稳定性。只需将甘醇(三甘醇或四甘醇)与双(三氟甲基磺酰基)酰亚胺锂(Li[TFSA])以 1:1 的摩尔比混合,即可得到澄清的液体。等摩尔配合物 [Li(三甘醇或四甘醇)(1)][TFSA] 在很宽的温度范围内保持稳定的液态,并可视为由Li(甘醇)(1)配合阳离子和TFSA阴离子组成的室温离子液体,在室温下表现出高自离解性(离子性)。[Li(甘醇)(1)][TFSA]的电化学氧化发生在电极电势约 5 V 相对于 Li/Li(+),而含有过量甘醇分子的溶液([Li(甘醇)(x)][TFSA],x > 1)的氧化发生在约 4 V 相对于 Li/Li(+)。这种氧化稳定性的提高归因于醚氧原子的孤对电子向 Li(+)阳离子的供体,导致甘醇分子的最高占据分子轨道(HOMO)能级降低,这通过从头算分子轨道计算得到证实。通过核磁共振(NMR)和电化学方法阐明了 [Li(甘醇)(x)][TFSA]溶液中 Li(+)阳离子的溶剂化状态和离子传导机制。实验结果强烈表明,在等摩尔配合物中,Li(+)阳离子的传导是通过Li(甘醇)(1)阳离子的迁移来实现的,而当Li(甘醇)(1)阳离子发生界面电化学反应时,配位交换机制会重叠。当 LiCoO(2)阴极的放电反应(即Li(甘醇)(1)的去溶剂化和生成的 Li(+)插入阴极)发生在电极-电解质界面时,具有[Li 阳极|[Li(甘醇)(1)][TFSA]|LiCoO(2)阴极]构型的锂离子电池中通常会出现配体交换传导模式。该电池可在 3.0-4.2 V 的电池电压范围内进行超过 200 次充放电循环,无论使用醚基电解质如何,因为配体交换速率远快于电极反应速率。