IEEE Trans Neural Syst Rehabil Eng. 2019 Oct;27(10):2178-2185. doi: 10.1109/TNSRE.2019.2936987. Epub 2019 Aug 22.
The performance of electroencephalogram (EEG)-based brain-computer interfaces (BCIs) still needs improvements for real world applications. An improvement on BCIs could be achieved by enhancing brain signals from the source via subject intention-based modulation. In this work, we aim to investigate the effects of task complexity on performance of motor imagery (MI) based BCIs. In specific, we studied the effects of motor imagery of a complex task versus a simple task on discriminability of brain activation patterns using EEG. The results show an increase of up to 7.25% in BCI classification accuracy for motor imagery of the complex task in comparison to the simple task. Furthermore, spectral power analysis in low frequency bands, alpha and beta, shows a significant decrease in power value for the complex task. However, high frequency gamma band analysis unveils a significant increase for the complex task. These findings may lead to designing better BCIs with high performance.
基于脑电图(EEG)的脑机接口(BCI)的性能仍需要改进,以适应实际应用。通过基于受试者意图的调制,从源头上增强脑信号,可以提高 BCI 的性能。在这项工作中,我们旨在研究任务复杂性对基于运动想象(MI)的 BCI 性能的影响。具体来说,我们使用 EEG 研究了复杂任务和简单任务的运动想象对大脑激活模式可区分性的影响。结果表明,与简单任务相比,复杂任务的运动想象的 BCI 分类准确率提高了 7.25%。此外,在低频带(alpha 和 beta)的频谱功率分析中,复杂任务的功率值显著降低。然而,高频 gamma 波段分析显示复杂任务的功率显著增加。这些发现可能会导致设计出具有更高性能的更好的 BCI。