Suppr超能文献

基于 CLRNet 网络模型的运动想象脑电信号解码算法。

Decoding Algorithm of Motor Imagery Electroencephalogram Signal Based on CLRNet Network Model.

机构信息

Department of Electronics Electricity and Control, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

出版信息

Sensors (Basel). 2023 Sep 6;23(18):7694. doi: 10.3390/s23187694.

Abstract

EEG decoding based on motor imagery is an important part of brain-computer interface technology and is an important indicator that determines the overall performance of the brain-computer interface. Due to the complexity of motor imagery EEG feature analysis, traditional classification models rely heavily on the signal preprocessing and feature design stages. End-to-end neural networks in deep learning have been applied to the classification task processing of motor imagery EEG and have shown good results. This study uses a combination of a convolutional neural network (CNN) and a long short-term memory (LSTM) network to obtain spatial information and temporal correlation from EEG signals. The use of cross-layer connectivity reduces the network gradient dispersion problem and enhances the overall network model stability. The effectiveness of this network model is demonstrated on the BCI Competition IV dataset 2a by integrating CNN, BiLSTM and ResNet (called CLRNet in this study) to decode motor imagery EEG. The network model combining CNN and BiLSTM achieved 87.0% accuracy in classifying motor imagery patterns in four classes. The network stability is enhanced by adding ResNet for cross-layer connectivity, which further improved the accuracy by 2.0% to achieve 89.0% classification accuracy. The experimental results show that CLRNet has good performance in decoding the motor imagery EEG dataset. This study provides a better solution for motor imagery EEG decoding in brain-computer interface technology research.

摘要

基于运动想象的脑电图解码是脑机接口技术的重要组成部分,是决定脑机接口整体性能的重要指标。由于运动想象脑电图特征分析的复杂性,传统的分类模型严重依赖于信号预处理和特征设计阶段。深度学习中的端到端神经网络已应用于运动想象脑电图的分类任务处理,并取得了良好的效果。本研究使用卷积神经网络(CNN)和长短期记忆(LSTM)网络的组合,从脑电图信号中获取空间信息和时间相关性。使用跨层连接减少了网络梯度弥散问题,增强了整体网络模型的稳定性。通过在 BCI 竞赛 IV 数据集 2a 上整合 CNN、BiLSTM 和 ResNet(在本研究中称为 CLRNet)来解码运动想象脑电图,证明了该网络模型的有效性。该网络模型结合 CNN 和 BiLSTM 在对四类运动想象模式进行分类时的准确率达到 87.0%。通过添加 ResNet 进行跨层连接来增强网络稳定性,进一步将准确率提高了 2.0%,达到 89.0%的分类准确率。实验结果表明,CLRNet 在解码运动想象脑电图数据集方面具有良好的性能。本研究为脑机接口技术研究中的运动想象脑电图解码提供了更好的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf32/10536050/06b8825bb3f4/sensors-23-07694-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验