Suppr超能文献

UNC-52/Perlecan 中的四个特定免疫球蛋白结构域与 NID-1/Nidogen 一起在. 的树突形态发生中发挥作用。

Four specific immunoglobulin domains in UNC-52/Perlecan function with NID-1/Nidogen during dendrite morphogenesis in .

机构信息

Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.

Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, KS 66045, USA.

出版信息

Development. 2018 May 14;145(10):dev158881. doi: 10.1242/dev.158881.

Abstract

The extracellular matrix is essential for various aspects of nervous system patterning. For example, sensory dendrites in flies, worms and fish have been shown to rely on coordinated interactions of tissues with extracellular matrix proteins. Here we show that the conserved basement membrane protein UNC-52/Perlecan is required for establishing the correct number of the highly ordered dendritic trees in the somatosensory neuron PVD in This function is dependent on four specific immunoglobulin domains, but independent of the known functions of UNC-52 in mediating muscle-skin attachment. Intriguingly, the four conserved immunoglobulin domains in UNC-52 are necessary to correctly localize the basement membrane protein NID-1/Nidogen Genetic experiments further show that , and genes of the netrin axon guidance signaling cassette share a common pathway to establish the correct number of somatosensory dendrites. Our studies suggest that, in addition to its role in mediating muscle-skin attachment, UNC-52 functions through immunoglobulin domains to establish an ordered lattice of basement membrane proteins, which may control the function of morphogens during dendrite patterning.

摘要

细胞外基质对于神经系统形态发生的各个方面都很重要。例如,已经证明,果蝇、线虫和鱼类的感觉树突依赖于组织与细胞外基质蛋白的协调相互作用。在这里,我们表明,保守的基底膜蛋白 UNC-52/Perlecan 对于在 中建立正确数量的高度有序的感觉神经元 PVD 树突是必需的。这个功能依赖于四个特定的免疫球蛋白结构域,但不依赖于 UNC-52 在介导肌肉-皮肤附着中的已知功能。有趣的是,UNC-52 中的四个保守的免疫球蛋白结构域对于正确定位基底膜蛋白 NID-1/Nidogen 是必需的。遗传实验进一步表明,UNC-52、netrin 轴突导向信号盒的 和 基因共享一个共同的途径来建立正确数量的感觉树突。我们的研究表明,除了在介导肌肉-皮肤附着中的作用外,UNC-52 还通过免疫球蛋白结构域发挥作用,建立基底膜蛋白的有序晶格,这可能控制形态发生素在树突形态发生过程中的功能。

相似文献

2
Multiple Pathways Act Together To Establish Asymmetry of the Ventral Nerve Cord in .
Genetics. 2019 Apr;211(4):1331-1343. doi: 10.1534/genetics.119.301999. Epub 2019 Feb 21.
3
Pioneer Axon Navigation Is Controlled by AEX-3, a Guanine Nucleotide Exchange Factor for RAB-3 in Caenorhabditis elegans.
Genetics. 2016 Jul;203(3):1235-47. doi: 10.1534/genetics.115.186064. Epub 2016 Apr 26.
5
UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites.
Nature. 2008 Oct 2;455(7213):669-73. doi: 10.1038/nature07291.
6
MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion.
Neuron. 2002 May 16;34(4):563-76. doi: 10.1016/s0896-6273(02)00672-4.
10
UNC-6 and UNC-40 promote dendritic growth through PAR-4 in Caenorhabditis elegans neurons.
Nat Neurosci. 2011 Feb;14(2):165-72. doi: 10.1038/nn.2717. Epub 2010 Dec 26.

引用本文的文献

1
UNC-52 localization with respect to longitudinal axon tracts in the ventral and dorsal nerve cords in .
MicroPubl Biol. 2025 Jul 18;2025. doi: 10.17912/micropub.biology.001703. eCollection 2025.
2
Dendrite morphogenesis in Caenorhabditis elegans.
Genetics. 2024 Jun 5;227(2). doi: 10.1093/genetics/iyae056.
4
Neural Tissue Homeostasis and Repair Is Regulated via CS and DS Proteoglycan Motifs.
Front Cell Dev Biol. 2021 Aug 2;9:696640. doi: 10.3389/fcell.2021.696640. eCollection 2021.
5
Transparent Touch: Insights From Model Systems on Epidermal Control of Somatosensory Innervation.
Front Cell Neurosci. 2021 May 31;15:680345. doi: 10.3389/fncel.2021.680345. eCollection 2021.
6
Basement membrane remodeling guides cell migration and cell morphogenesis during development.
Curr Opin Cell Biol. 2021 Oct;72:19-27. doi: 10.1016/j.ceb.2021.04.003. Epub 2021 May 18.
7
[Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 May 25;49(1):90-99. doi: 10.3785/j.issn.1008-9292.2020.02.09.
8
Mechanisms that regulate morphogenesis of a highly branched neuron in C. elegans.
Dev Biol. 2019 Jul 1;451(1):53-67. doi: 10.1016/j.ydbio.2019.04.002. Epub 2019 Apr 17.
9
Beyond being innervated: the epidermis actively shapes sensory dendritic patterning.
Open Biol. 2019 Mar 29;9(3):180257. doi: 10.1098/rsob.180257.
10
Morphogenesis of neurons and glia within an epithelium.
Development. 2019 Feb 20;146(4):dev171124. doi: 10.1242/dev.171124.

本文引用的文献

1
Dynein and EFF-1 control dendrite morphology by regulating the localization pattern of SAX-7 in epidermal cells.
J Cell Sci. 2017 Dec 1;130(23):4063-4071. doi: 10.1242/jcs.201699. Epub 2017 Oct 26.
2
Basement Membrane Type IV Collagen and Laminin: An Overview of Their Biology and Value as Fibrosis Biomarkers of Liver Disease.
Anat Rec (Hoboken). 2017 Aug;300(8):1371-1390. doi: 10.1002/ar.23567. Epub 2017 Feb 28.
5
Muscle- and Skin-Derived Cues Jointly Orchestrate Patterning of Somatosensory Dendrites.
Curr Biol. 2016 Sep 12;26(17):2379-87. doi: 10.1016/j.cub.2016.07.008. Epub 2016 Jul 21.
7
RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport.
PLoS Genet. 2015 Dec 3;11(12):e1005695. doi: 10.1371/journal.pgen.1005695. eCollection 2015 Dec.
8
RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization.
PLoS Genet. 2015 Sep 22;11(9):e1005484. doi: 10.1371/journal.pgen.1005484. eCollection 2015.
9
The unfolded protein response is required for dendrite morphogenesis.
Elife. 2015 Jun 8;4:e06963. doi: 10.7554/eLife.06963.
10
Sarcomeres Pattern Proprioceptive Sensory Dendritic Endings through UNC-52/Perlecan in C. elegans.
Dev Cell. 2015 May 26;33(4):388-400. doi: 10.1016/j.devcel.2015.03.010. Epub 2015 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验