Suppr超能文献

上皮细胞内神经元和神经胶质的形态发生。

Morphogenesis of neurons and glia within an epithelium.

机构信息

Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA.

Université de Rennes 1, Plateforme microscopie électronique, 35043 Rennes, France.

出版信息

Development. 2019 Feb 20;146(4):dev171124. doi: 10.1242/dev.171124.

Abstract

To sense the outside world, some neurons protrude across epithelia, the cellular barriers that line every surface of our bodies. To study the morphogenesis of such neurons, we examined the amphid, in which dendrites protrude through a glial channel at the nose. During development, amphid dendrites extend by attaching to the nose via DYF-7, a type of protein typically found in epithelial apical ECM. Here, we show that amphid neurons and glia exhibit epithelial properties, including tight junctions and apical-basal polarity, and develop in a manner resembling other epithelia. We find that DYF-7 is a fibril-forming apical ECM component that promotes formation of the tube-shaped glial channel, reminiscent of roles for apical ECM in other narrow epithelial tubes. We also identify a requirement for FRM-2, a homolog of EPBL15/moe/Yurt that promotes epithelial integrity in other systems. Finally, we show that other environmentally exposed neurons share a requirement for DYF-7. Together, our results suggest that these neurons and glia can be viewed as part of an epithelium continuous with the skin, and are shaped by mechanisms shared with other epithelia.

摘要

为了感知外部世界,一些神经元会穿过上皮细胞(epithelia)向外突出,上皮细胞是构成我们身体每一面的细胞屏障。为了研究这些神经元的形态发生,我们研究了触角(amphid),其树突通过位于鼻子处的一个神经胶质通道向外突出。在发育过程中,触角树突通过与鼻子上的 DYF-7 蛋白结合而延伸,这种蛋白通常存在于上皮细胞的顶端细胞外基质(ECM)中。在这里,我们发现触角神经元和神经胶质表现出上皮细胞的特性,包括紧密连接和顶端-基底极性,并以类似于其他上皮细胞的方式发育。我们发现 DYF-7 是一种形成纤维的顶端 ECM 成分,可促进管状神经胶质通道的形成,这让人联想到顶端 ECM 在其他狭窄的上皮管中的作用。我们还发现 FRM-2(一种在其他系统中促进上皮完整性的 EPBL15/moe/Yurt 同源物)的作用对于这种发育是必需的。最后,我们发现其他暴露于环境中的神经元也需要 DYF-7。总之,我们的结果表明,这些神经元和神经胶质可以被视为与皮肤连续的上皮的一部分,并且其形态由与其他上皮细胞共享的机制塑造。

相似文献

1
Morphogenesis of neurons and glia within an epithelium.
Development. 2019 Feb 20;146(4):dev171124. doi: 10.1242/dev.171124.
2
Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans.
Dev Cell. 2024 Jul 8;59(13):1668-1688.e7. doi: 10.1016/j.devcel.2024.04.005. Epub 2024 Apr 25.
3
Dendrites with specialized glial attachments develop by retrograde extension using SAX-7 and GRDN-1.
Development. 2020 Feb 17;147(4):dev180448. doi: 10.1242/dev.180448.
4
DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration.
Cell. 2009 Apr 17;137(2):344-55. doi: 10.1016/j.cell.2009.01.057. Epub 2009 Apr 2.
5
IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans.
Dev Biol. 2017 Oct 1;430(1):105-112. doi: 10.1016/j.ydbio.2017.08.009. Epub 2017 Aug 10.
6
Sensory organ remodeling in Caenorhabditis elegans requires the zinc-finger protein ZTF-16.
Genetics. 2012 Apr;190(4):1405-15. doi: 10.1534/genetics.111.137786. Epub 2012 Jan 31.
8
Opposing activities of LIT-1/NLK and DAF-6/patched-related direct sensory compartment morphogenesis in C. elegans.
PLoS Biol. 2011 Aug;9(8):e1001121. doi: 10.1371/journal.pbio.1001121. Epub 2011 Aug 9.
9
Neuron cilia restrain glial KCC-3 to a microdomain to regulate multisensory processing.
Cell Rep. 2024 Mar 26;43(3):113844. doi: 10.1016/j.celrep.2024.113844. Epub 2024 Feb 27.
10
A multicellular rosette-mediated collective dendrite extension.
Elife. 2019 Feb 15;8:e38065. doi: 10.7554/eLife.38065.

引用本文的文献

1
Embryonic Development of Caenorhabditis elegans Sense Organs.
J Comp Neurol. 2025 Sep;533(9):e70084. doi: 10.1002/cne.70084.
2
Glia in Invertebrate Models: Insights from Caenorhabditis elegans.
Adv Neurobiol. 2024;39:19-49. doi: 10.1007/978-3-031-64839-7_2.
3
Specialized structure and function of the apical extracellular matrix at sense organs.
Cells Dev. 2024 Sep;179:203942. doi: 10.1016/j.cdev.2024.203942. Epub 2024 Jul 25.
5
Dendrite morphogenesis in Caenorhabditis elegans.
Genetics. 2024 Jun 5;227(2). doi: 10.1093/genetics/iyae056.
6
Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans.
Dev Cell. 2024 Jul 8;59(13):1668-1688.e7. doi: 10.1016/j.devcel.2024.04.005. Epub 2024 Apr 25.
8
Glia Development and Function in the Nematode .
Cold Spring Harb Perspect Biol. 2024 Dec 2;16(12):a041346. doi: 10.1101/cshperspect.a041346.
9
MALT-1 shortens lifespan by inhibiting autophagy in the intestine of .
Autophagy Rep. 2023 Nov 9;2(1):2277584. doi: 10.1080/27694127.2023.2277584.
10
Neuron cilia restrain glial KCC-3 to a microdomain to regulate multisensory processing.
Cell Rep. 2024 Mar 26;43(3):113844. doi: 10.1016/j.celrep.2024.113844. Epub 2024 Feb 27.

本文引用的文献

1
A multicellular rosette-mediated collective dendrite extension.
Elife. 2019 Feb 15;8:e38065. doi: 10.7554/eLife.38065.
2
Epithelial Shaping by Diverse Apical Extracellular Matrices Requires the Nidogen Domain Protein DEX-1 in .
Genetics. 2019 Jan;211(1):185-200. doi: 10.1534/genetics.118.301752. Epub 2018 Nov 8.
3
Epidermal Remodeling in Dauers Requires the Nidogen Domain Protein DEX-1.
Genetics. 2019 Jan;211(1):169-183. doi: 10.1534/genetics.118.301557. Epub 2018 Nov 8.
4
Talking back: Development of the olivocochlear efferent system.
Wiley Interdiscip Rev Dev Biol. 2018 Nov;7(6):e324. doi: 10.1002/wdev.324. Epub 2018 Jun 26.
5
Structure of Zona Pellucida Module Proteins.
Curr Top Dev Biol. 2018;130:413-442. doi: 10.1016/bs.ctdb.2018.02.007. Epub 2018 May 10.
6
A targeted 3D EM and correlative microscopy method using SEM array tomography.
Development. 2018 Jun 21;145(12):dev160879. doi: 10.1242/dev.160879.
8
An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity.
PLoS Genet. 2018 Jan 8;14(1):e1007146. doi: 10.1371/journal.pgen.1007146. eCollection 2018 Jan.
10
Dynein and EFF-1 control dendrite morphology by regulating the localization pattern of SAX-7 in epidermal cells.
J Cell Sci. 2017 Dec 1;130(23):4063-4071. doi: 10.1242/jcs.201699. Epub 2017 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验