Suppr超能文献

细胞外基质蛋白DIG-1的缺失导致神经胶质细胞碎片化、树突断裂和树突延伸缺陷。

Loss of the Extracellular Matrix Protein DIG-1 Causes Glial Fragmentation, Dendrite Breakage, and Dendrite Extension Defects.

作者信息

Chong Megan K, Cebul Elizabeth R, Mizeracka Karolina, Heiman Maxwell G

机构信息

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.

Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.

出版信息

J Dev Biol. 2021 Oct 7;9(4):42. doi: 10.3390/jdb9040042.

Abstract

The extracellular matrix (ECM) guides and constrains the shape of the nervous system. In , DIG-1 is a giant ECM component that is required for fasciculation of sensory dendrites during development and for maintenance of axon positions throughout life. We identified four novel alleles of in three independent screens for mutants affecting disparate aspects of neuronal and glial morphogenesis. First, we find that disruption of DIG-1 causes fragmentation of the amphid sheath glial cell in larvae and young adults. Second, it causes severing of the BAG sensory dendrite from its terminus at the nose tip, apparently due to breakage of the dendrite as animals reach adulthood. Third, it causes embryonic defects in dendrite fasciculation in inner labial (IL2) sensory neurons, as previously reported, as well as rare defects in IL2 dendrite extension that are enhanced by loss of the apical ECM component DYF-7, suggesting that apical and basolateral ECM contribute separately to dendrite extension. Our results highlight novel roles for DIG-1 in maintaining the cellular integrity of neurons and glia, possibly by creating a barrier between structures in the nervous system.

摘要

细胞外基质(ECM)引导并限制神经系统的形状。在[具体研究体系]中,DIG-1是一种巨大的ECM成分,在发育过程中感觉树突的成束以及整个生命过程中轴突位置的维持方面是必需的。我们在三个独立的筛选中鉴定出了[基因名称]的四个新等位基因,这些筛选针对影响神经元和神经胶质细胞形态发生不同方面的突变体。首先,我们发现DIG-1的破坏会导致幼虫和年轻成虫的两性鞘神经胶质细胞碎片化。其次,它会导致BAG感觉树突从其在鼻尖的末端断开,这显然是由于动物成年时树突的断裂。第三,如先前报道的那样,它会导致内唇(IL2)感觉神经元的树突成束出现胚胎缺陷,以及IL2树突延伸的罕见缺陷,而顶端ECM成分DYF-7的缺失会加剧这些缺陷,这表明顶端和基底外侧的ECM对树突延伸分别有贡献。我们的结果突出了DIG-1在维持神经元和神经胶质细胞的细胞完整性方面的新作用,可能是通过在神经系统的结构之间形成屏障来实现的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5935/8544517/de2d8679af67/jdb-09-00042-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验