Suppr超能文献

结构和热力学洞察 β-1,2-葡寡糖由溶质结合蛋白在. 中的捕获。

Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in .

机构信息

From the Department of Biotechnology.

Agricultural Bioinformatics Research Unit, and.

出版信息

J Biol Chem. 2018 Jun 8;293(23):8812-8828. doi: 10.1074/jbc.RA117.001536. Epub 2018 Apr 20.

Abstract

β-1,2-Glucans are bacterial carbohydrates that exist in cyclic or linear forms and play an important role in infections and symbioses involving Gram-negative bacteria. Although several β-1,2-glucan-associated enzymes have been characterized, little is known about how β-1,2-glucan and its shorter oligosaccharides (Sop s) are captured and imported into the bacterial cell. Here, we report the biochemical and structural characteristics of the Sop -binding protein (SO-BP, Lin1841) associated with the ATP-binding cassette (ABC) transporter from the Gram-positive bacterium Calorimetric analysis revealed that SO-BP specifically binds to Sop s with a degree of polymerization of 3 or more, with values in the micromolar range. The crystal structures of SO-BP in an unliganded open form and in closed complexes with tri-, tetra-, and pentaoligosaccharides (Sop) were determined to a maximum resolution of 1.6 Å. The binding site displayed shape complementarity to Sop , which adopted a zigzag conformation. We noted that water-mediated hydrogen bonds and stacking interactions play a pivotal role in the recognition of Sop by SO-BP, consistent with its binding thermodynamics. Computational free-energy calculations and a mutational analysis confirmed that interactions with the third glucose moiety of Sop s are significantly responsible for ligand binding. A reduction in unfavorable changes in binding entropy that were in proportion to the lengths of the Sop s was explained by conformational entropy changes. Phylogenetic and sequence analyses indicated that SO-BP ABC transporter homologs, glycoside hydrolases, and other related proteins are co-localized in the genomes of several bacteria. This study may improve our understanding of bacterial β-1,2-glucan metabolism and promote the discovery of unidentified β-1,2-glucan-associated proteins.

摘要

β-1,2-葡聚糖是细菌碳水化合物,存在于环状或线性形式中,在涉及革兰氏阴性细菌的感染和共生中发挥重要作用。尽管已经鉴定了几种与β-1,2-葡聚糖相关的酶,但对于β-1,2-葡聚糖及其较短的寡糖( Sop s)如何被捕获和导入细菌细胞知之甚少。在这里,我们报告了与革兰氏阳性菌 Calorimetric analysis revealed that SO-BP specifically binds to Sop s with a degree of polymerization of 3 or more, with values in the micromolar range. 相关的 Sop 结合蛋白(SO-BP,Lin1841)的生化和结构特征。 Calorimetric analysis 显示,SO-BP 特异性结合具有 3 个或更多聚合度的 Sop s,结合常数在微摩尔范围内。未配体结合的开放形式和与三、四和五寡糖( Sop)的封闭复合物的 SO-BP 的晶体结构被确定为最大分辨率为 1.6 Å。结合位点显示与 Sop 的形状互补性,Sop 采用锯齿形构象。我们注意到,水介导的氢键和堆积相互作用在 Sop 与 SO-BP 的识别中起着关键作用,这与结合热力学一致。计算自由能计算和突变分析证实,与 Sop s 的第三个葡萄糖残基的相互作用对于配体结合具有重要意义。 Sop s 长度成比例的结合熵不利变化的减少可以通过构象熵变化来解释。系统发育和序列分析表明,SO-BP ABC 转运蛋白同源物、糖苷水解酶和其他相关蛋白在几种细菌的基因组中共定位。这项研究可能有助于提高我们对细菌β-1,2-葡聚糖代谢的理解,并促进对未识别的β-1,2-葡聚糖相关蛋白的发现。

相似文献

1
Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in .
J Biol Chem. 2018 Jun 8;293(23):8812-8828. doi: 10.1074/jbc.RA117.001536. Epub 2018 Apr 20.
2
Functional and Structural Analysis of a β-Glucosidase Involved in β-1,2-Glucan Metabolism in Listeria innocua.
PLoS One. 2016 Feb 17;11(2):e0148870. doi: 10.1371/journal.pone.0148870. eCollection 2016.
3
Function and structure relationships of a β-1,2-glucooligosaccharide-degrading β-glucosidase.
FEBS Lett. 2017 Dec;591(23):3926-3936. doi: 10.1002/1873-3468.12911. Epub 2017 Nov 24.
4
Unraveling the subtleties of β-(1→3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families.
J Biol Chem. 2019 Apr 19;294(16):6483-6493. doi: 10.1074/jbc.RA119.007712. Epub 2019 Feb 28.
5
Carbohydrate-Binding Capability and Functional Conformational Changes of AbnE, an Arabino-oligosaccharide Binding Protein.
J Mol Biol. 2020 Mar 27;432(7):2099-2120. doi: 10.1016/j.jmb.2020.01.041. Epub 2020 Feb 14.
7
Structural and thermodynamic characterization of endo-1,3-β-glucanase: Insights into the substrate recognition mechanism.
Biochim Biophys Acta Proteins Proteom. 2018 Mar;1866(3):415-425. doi: 10.1016/j.bbapap.2017.12.004. Epub 2017 Dec 12.
8
Structural Analysis of a Family 81 Glycoside Hydrolase Implicates Its Recognition of β-1,3-Glucan Quaternary Structure.
Structure. 2017 Sep 5;25(9):1348-1359.e3. doi: 10.1016/j.str.2017.06.019. Epub 2017 Aug 3.
10
Characterization and Structural Analysis of a Novel exo-Type Enzyme Acting on β-1,2-Glucooligosaccharides from Parabacteroides distasonis.
Biochemistry. 2018 Jul 3;57(26):3849-3860. doi: 10.1021/acs.biochem.8b00385. Epub 2018 May 25.

引用本文的文献

2
New glycoside hydrolase families of β-1,2-glucanases.
Protein Sci. 2025 Jun;34(6):e70147. doi: 10.1002/pro.70147.
4
Utilization of dietary mixed-linkage β-glucans by the Firmicute Blautia producta.
J Biol Chem. 2023 Jun;299(6):104806. doi: 10.1016/j.jbc.2023.104806. Epub 2023 May 11.
5
Novel functional insights into a modified sugar-binding protein from Synechococcus MITS9220.
Sci Rep. 2022 Mar 21;12(1):4805. doi: 10.1038/s41598-022-08459-8.
6
Molecular analysis of cyclic α-maltosyl-(1→6)-maltose binding protein in the bacterial metabolic pathway.
PLoS One. 2020 Nov 19;15(11):e0241912. doi: 10.1371/journal.pone.0241912. eCollection 2020.
7
Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis.
Sci Adv. 2019 Aug 28;5(8):eaaw7696. doi: 10.1126/sciadv.aaw7696. eCollection 2019 Aug.
8
Substrate preference of an ABC importer corresponds to selective growth on β-(1,6)-galactosides in subsp. .
J Biol Chem. 2019 Aug 2;294(31):11701-11711. doi: 10.1074/jbc.RA119.008843. Epub 2019 Jun 11.
9
Identification, characterization, and structural analyses of a fungal endo-β-1,2-glucanase reveal a new glycoside hydrolase family.
J Biol Chem. 2019 May 10;294(19):7942-7965. doi: 10.1074/jbc.RA118.007087. Epub 2019 Mar 29.
10
Unraveling the subtleties of β-(1→3)-glucan phosphorylase specificity in the GH94, GH149, and GH161 glycoside hydrolase families.
J Biol Chem. 2019 Apr 19;294(16):6483-6493. doi: 10.1074/jbc.RA119.007712. Epub 2019 Feb 28.

本文引用的文献

1
Predicting Secretory Proteins with SignalP.
Methods Mol Biol. 2017;1611:59-73. doi: 10.1007/978-1-4939-7015-5_6.
2
Biochemical and structural analyses of a bacterial -β-1,2-glucanase reveal a new glycoside hydrolase family.
J Biol Chem. 2017 May 5;292(18):7487-7506. doi: 10.1074/jbc.M116.762724. Epub 2017 Mar 7.
4
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
6
ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules.
Nucleic Acids Res. 2016 Jul 8;44(W1):W344-50. doi: 10.1093/nar/gkw408. Epub 2016 May 10.
7
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
8
Functional and Structural Analysis of a β-Glucosidase Involved in β-1,2-Glucan Metabolism in Listeria innocua.
PLoS One. 2016 Feb 17;11(2):e0148870. doi: 10.1371/journal.pone.0148870. eCollection 2016.
9
P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation.
J Chem Theory Comput. 2008 Jan;4(1):116-22. doi: 10.1021/ct700200b.
10
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验