Suppr超能文献

在多样化乳腺癌患者人群中使用 21 基因复发评分:建立预测高危评分和新辅助化疗反应的临床病理模型。

Utilization of the 21-Gene Recurrence Score in a Diverse Breast Cancer Patient Population: Development of a Clinicopathologic Model to Predict High-Risk Scores and Response to Neoadjuvant Chemotherapy.

机构信息

Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.

Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA.

出版信息

Ann Surg Oncol. 2018 Jul;25(7):1921-1927. doi: 10.1245/s10434-018-6440-7. Epub 2018 Apr 20.

Abstract

INTRODUCTION

The 21-gene expression profile [Oncotype DX Recurrence Score (RS)] stratifies benefit from adjuvant chemotherapy in hormone receptor (HR)-positive, HER2/neu-negative, node-negative breast cancer. It is not routinely applied to predict neoadjuvant chemotherapy (NACT) response; data in diverse patient populations also are limited. We developed a statistical model based on standard clinicopathologic features to identify high-risk cases (RS > 30) and then evaluated ability of predicted high RS to predict for NACT downstaging.

METHODS

Primary surgery patients with Oncotype DX RS testing 2012-2016 were identified from a prospectively-maintained database. A RS predictive model was created and applied to a dataset of comparable NACT patients. Response was defined as tumor size decrease ≥ 1 cm.

RESULTS

Of 394 primary surgery patients-60.4% white American; 31.0% African American-RS distribution was similar for both groups. No single feature reliably identified high RS patients; however, a model accounting for age, HR expression, proliferative index (MIB1/Ki67), histology, and tumor size was generated, with receiver operator area under the curve 0.909. Fifty-six NACT patients were identified (25 African American). Of 21 cases with all relevant clinicopathology, 14 responded to NACT and the model generated high-risk RS in 14 (100%); conversely, of 16 cases generating high-risk RS, only 2 did not respond.

CONCLUSIONS

Predictive modelling can identify high RS patients; this model also can identify patients likely to experience primary tumor downstaging with NACT. Until this model is validated in other datasets, we recommend that Oncotype-eligible patients undergo primary surgery with decisions regarding chemotherapy made in the adjuvant setting.

摘要

简介

21 基因表达谱[Oncotype DX 复发评分 (RS)]可将激素受体 (HR)阳性、HER2/neu 阴性、淋巴结阴性乳腺癌患者的获益分层。其并不常规用于预测新辅助化疗 (NACT) 反应;在不同患者人群中的数据也有限。我们基于标准的临床病理特征开发了一个统计模型,以识别高危病例 (RS > 30),然后评估预测高 RS 对 NACT 降期的能力。

方法

从一个前瞻性维护的数据库中确定了 2012-2016 年接受 Oncotype DX RS 检测的原发性手术患者。创建了一个 RS 预测模型,并将其应用于一组可比的 NACT 患者数据集中。反应定义为肿瘤大小减小≥1cm。

结果

在 394 名原发性手术患者中——60.4%为白种美国人;31.0%为非裔美国人——两组的 RS 分布相似。没有单一特征能可靠地识别出高 RS 患者;然而,生成了一个考虑年龄、HR 表达、增殖指数 (MIB1/Ki67)、组织学和肿瘤大小的模型,其接受者操作特征曲线下面积为 0.909。确定了 56 名 NACT 患者(25 名非裔美国人)。在 21 例具有所有相关临床病理特征的病例中,14 例对 NACT 有反应,模型生成了高风险 RS 的有 14 例(100%);相反,在 16 例生成高风险 RS 的病例中,只有 2 例没有反应。

结论

预测模型可以识别高 RS 患者;该模型还可以识别出可能因 NACT 而使原发肿瘤降期的患者。在该模型在其他数据集得到验证之前,我们建议符合 Oncotype 条件的患者接受原发性手术,化疗决策在辅助治疗中做出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验