Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
Department of Applied Health Research, University College London, London, UK.
Pharmacoeconomics. 2018 Aug;36(8):889-901. doi: 10.1007/s40273-018-0650-5.
Cost-effectiveness analyses (CEA) of randomised controlled trials are a key source of information for health care decision makers. Missing data are, however, a common issue that can seriously undermine their validity. A major concern is that the chance of data being missing may be directly linked to the unobserved value itself [missing not at random (MNAR)]. For example, patients with poorer health may be less likely to complete quality-of-life questionnaires. However, the extent to which this occurs cannot be ascertained from the data at hand. Guidelines recommend conducting sensitivity analyses to assess the robustness of conclusions to plausible MNAR assumptions, but this is rarely done in practice, possibly because of a lack of practical guidance. This tutorial aims to address this by presenting an accessible framework and practical guidance for conducting sensitivity analysis for MNAR data in trial-based CEA. We review some of the methods for conducting sensitivity analysis, but focus on one particularly accessible approach, where the data are multiply-imputed and then modified to reflect plausible MNAR scenarios. We illustrate the implementation of this approach on a weight-loss trial, providing the software code. We then explore further issues around its use in practice.
随机对照试验的成本效益分析(CEA)是医疗保健决策者的重要信息来源。然而,缺失数据是一个常见的问题,可能严重影响其有效性。一个主要关注点是,数据缺失的可能性可能与未观察到的值本身直接相关[非随机缺失(MNAR)]。例如,健康状况较差的患者可能不太可能完成生活质量问卷。然而,从手头的数据中无法确定这种情况发生的程度。指南建议进行敏感性分析,以评估结论对合理 MNAR 假设的稳健性,但在实践中很少这样做,可能是因为缺乏实用指南。本教程旨在通过为基于试验的 CEA 中的 MNAR 数据进行敏感性分析提供一个易于理解的框架和实用指南来解决这个问题。我们回顾了一些进行敏感性分析的方法,但重点介绍了一种特别易于使用的方法,即对数据进行多次插补,然后对其进行修改以反映合理的 MNAR 情况。我们以一项减肥试验为例说明了该方法的实施,并提供了软件代码。然后,我们探讨了在实践中使用该方法的进一步问题。