Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK.
Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.
Health Econ. 2018 Nov;27(11):1670-1683. doi: 10.1002/hec.3793. Epub 2018 Jul 3.
Health economics studies with missing data are increasingly using approaches such as multiple imputation that assume that the data are "missing at random." This assumption is often questionable, as-even given the observed data-the probability that data are missing may reflect the true, unobserved outcomes, such as the patients' true health status. In these cases, methodological guidelines recommend sensitivity analyses to recognise data may be "missing not at random" (MNAR), and call for the development of practical, accessible approaches for exploring the robustness of conclusions to MNAR assumptions. Little attention has been paid to the problem that data may be MNAR in health economics in general and in cost-effectiveness analyses (CEA) in particular. In this paper, we propose a Bayesian framework for CEA where outcome or cost data are missing. Our framework includes a practical, accessible approach to sensitivity analysis that allows the analyst to draw on expert opinion. We illustrate the framework in a CEA comparing an endovascular strategy with open repair for patients with ruptured abdominal aortic aneurysm, and provide software tools to implement this approach.
健康经济学研究中越来越多地使用缺失数据的方法,例如多重插补,该方法假设数据是“随机缺失”。这种假设通常是值得怀疑的,因为——即使考虑到观察到的数据——数据缺失的概率可能反映了真实的、未观察到的结果,例如患者的真实健康状况。在这些情况下,方法学指南建议进行敏感性分析,以认识到数据可能是“非随机缺失”(MNAR),并呼吁开发实用的、易于访问的方法来探索对 MNAR 假设的结论的稳健性。一般来说,健康经济学中特别是在成本效益分析(CEA)中,人们很少关注数据可能是非随机缺失的问题。在本文中,我们提出了一种用于 CEA 的贝叶斯框架,其中存在结局或成本数据缺失的情况。我们的框架包括一种实用的、易于访问的敏感性分析方法,允许分析师利用专家意见。我们在一项比较血管内策略与开放性修复破裂性腹主动脉瘤患者的 CEA 中说明了该框架,并提供了实施该方法的软件工具。