Suppr超能文献

优化化学探针在G蛋白偶联受体中的基因整合,用于活的哺乳动物细胞中的光交联图谱绘制和生物正交化学。

Optimizing the Genetic Incorporation of Chemical Probes into GPCRs for Photo-crosslinking Mapping and Bioorthogonal Chemistry in Live Mammalian Cells.

作者信息

Serfling Robert, Seidel Lisa, Böttke Thore, Coin Irene

机构信息

Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig.

Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig;

出版信息

J Vis Exp. 2018 Apr 9(134):57069. doi: 10.3791/57069.

Abstract

The genetic incorporation of non-canonical amino acids (ncAAs) via amber stop codon suppression is a powerful technique to install artificial probes and reactive moieties onto proteins directly in the live cell. Each ncAA is incorporated by a dedicated orthogonal suppressor-tRNA/amino-acyl-tRNA-synthetase (AARS) pair that is imported into the host organism. The incorporation efficiency of different ncAAs can greatly differ, and be unsatisfactory in some cases. Orthogonal pairs can be improved by manipulating either the AARS or the tRNA. However, directed evolution of tRNA or AARS using large libraries and dead/alive selection methods are not feasible in mammalian cells. Here, a facile and robust fluorescence-based assay to evaluate the efficiency of orthogonal pairs in mammalian cells is presented. The assay allows screening tens to hundreds of AARS/tRNA variants with a moderate effort and within a reasonable time. Use of this assay to generate new tRNAs that significantly improve the efficiency of the pyrrolysine orthogonal system is described, along with the application of ncAAs to the study of G-protein coupled receptors (GPCRs), which are challenging objects for ncAA mutagenesis. First, by systematically incorporating a photo-crosslinking ncAA throughout the extracellular surface of a receptor, binding sites of different ligands on the intact receptor are mapped directly in the live cell. Second, by incorporating last-generation ncAAs into a GPCR, ultrafast catalyst-free receptor labeling with a fluorescent dye is demonstrated, which exploits bioorthogonal strain-promoted inverse Diels Alder cycloaddition (SPIEDAC) on the live cell. As ncAAs can be generally applied to any protein independently on its size, the method is of general interest for a number of applications. In addition, ncAA incorporation does not require any special equipment and is easily performed in standard biochemistry labs.

摘要

通过琥珀色终止密码子抑制实现非标准氨基酸(ncAA)的基因掺入是一种在活细胞中直接将人工探针和反应性基团安装到蛋白质上的强大技术。每个ncAA由一对专门的正交抑制性tRNA/氨酰-tRNA合成酶(AARS)掺入,该对被导入宿主生物体。不同ncAA的掺入效率可能有很大差异,在某些情况下并不理想。可以通过操纵AARS或tRNA来改进正交对。然而,使用大型文库和死活筛选方法对tRNA或AARS进行定向进化在哺乳动物细胞中是不可行的。在此,提出了一种简便且稳健的基于荧光的测定方法,用于评估哺乳动物细胞中正交对的效率。该测定方法允许在适度的工作量和合理的时间内筛选数十至数百个AARS/tRNA变体。描述了使用该测定方法生成显著提高吡咯赖氨酸正交系统效率的新tRNA,以及将ncAA应用于G蛋白偶联受体(GPCR)的研究,GPCR是ncAA诱变的具有挑战性的对象。首先,通过在受体的整个细胞外表面系统地掺入光交联ncAA,直接在活细胞中绘制完整受体上不同配体的结合位点。其次,通过将最新一代的ncAA掺入GPCR中,证明了用荧光染料进行超快无催化剂受体标记,这利用了活细胞上的生物正交应变促进的逆狄尔斯-阿尔德环加成反应(SPIEDAC)。由于ncAA通常可以独立于其大小应用于任何蛋白质,因此该方法在许多应用中具有普遍意义。此外,ncAA掺入不需要任何特殊设备,并且在标准生物化学实验室中很容易进行。

相似文献

3
Labeling proteins on live mammalian cells using click chemistry.
Nat Protoc. 2015 May;10(5):780-91. doi: 10.1038/nprot.2015.045. Epub 2015 Apr 23.
4
Dual stop codon suppression in mammalian cells with genomically integrated genetic code expansion machinery.
Cell Rep Methods. 2023 Nov 20;3(11):100626. doi: 10.1016/j.crmeth.2023.100626. Epub 2023 Nov 6.
6
Directed evolution of aminoacyl-tRNA synthetases through hypermutation.
bioRxiv. 2024 Sep 27:2024.09.27.615507. doi: 10.1101/2024.09.27.615507.
7
Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code.
PLoS One. 2012;7(4):e31992. doi: 10.1371/journal.pone.0031992. Epub 2012 Apr 6.
8
Noncanonical amino acids in the interrogation of cellular protein synthesis.
Acc Chem Res. 2011 Sep 20;44(9):677-85. doi: 10.1021/ar200144y. Epub 2011 Aug 4.
9
10
Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
Acc Chem Res. 2017 Nov 21;50(11):2767-2775. doi: 10.1021/acs.accounts.7b00376. Epub 2017 Oct 6.

引用本文的文献

1
Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies.
Chem Rev. 2024 Nov 27;124(22):12498-12550. doi: 10.1021/acs.chemrev.4c00181. Epub 2024 Nov 7.
2
Rebooting life: engineering non-natural nucleic acids, proteins and metabolites in microorganisms.
Microb Cell Fact. 2022 May 28;21(1):100. doi: 10.1186/s12934-022-01828-y.
3
Exploring GPCR-arrestin interfaces with genetically encoded crosslinkers.
EMBO Rep. 2020 Nov 5;21(11):e50437. doi: 10.15252/embr.202050437. Epub 2020 Sep 14.
4
Incorporation of non-standard amino acids into proteins: challenges, recent achievements, and emerging applications.
Appl Microbiol Biotechnol. 2019 Apr;103(7):2947-2958. doi: 10.1007/s00253-019-09690-6. Epub 2019 Feb 21.

本文引用的文献

3
Site-specific incorporation of phosphotyrosine using an expanded genetic code.
Nat Chem Biol. 2017 Aug;13(8):842-844. doi: 10.1038/nchembio.2406. Epub 2017 Jun 12.
5
Debugging Eukaryotic Genetic Code Expansion for Site-Specific Click-PAINT Super-Resolution Microscopy.
Angew Chem Int Ed Engl. 2016 Dec 23;55(52):16172-16176. doi: 10.1002/anie.201608284. Epub 2016 Nov 2.
6
Genetically encoding new bioreactivity.
N Biotechnol. 2017 Sep 25;38(Pt A):16-25. doi: 10.1016/j.nbt.2016.10.003. Epub 2016 Oct 6.
7
Incorporation of Unnatural Amino Acids into Proteins Expressed in Mammalian Cells.
Methods Enzymol. 2016;580:89-107. doi: 10.1016/bs.mie.2016.05.003. Epub 2016 Jun 24.
8
Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics.
Chem Rev. 2017 Jan 11;117(1):186-245. doi: 10.1021/acs.chemrev.6b00084. Epub 2016 Jun 24.
9
New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes.
Chemistry. 2016 Jun 20;22(26):8972-9. doi: 10.1002/chem.201600590. Epub 2016 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验