Suppr超能文献

模型拟合与项目因子分析:过度因子分析、不足因子分析,以及一个指导解释的程序。

Model Fit and Item Factor Analysis: Overfactoring, Underfactoring, and a Program to Guide Interpretation.

机构信息

a Michigan State University.

出版信息

Multivariate Behav Res. 2018 Jul-Aug;53(4):544-558. doi: 10.1080/00273171.2018.1461058. Epub 2018 Apr 23.

Abstract

In exploratory item factor analysis (IFA), researchers may use model fit statistics and commonly invoked fit thresholds to help determine the dimensionality of an assessment. However, these indices and thresholds may mislead as they were developed in a confirmatory framework for models with continuous, not categorical, indicators. The present study used Monte Carlo simulation methods to investigate the ability of popular model fit statistics (chi-square, root mean square error of approximation, the comparative fit index, and the Tucker-Lewis index) and their standard cutoff values to detect the optimal number of latent dimensions underlying sets of dichotomous items. Models were fit to data generated from three-factor population structures that varied in factor loading magnitude, factor intercorrelation magnitude, number of indicators, and whether cross loadings or minor factors were included. The effectiveness of the thresholds varied across fit statistics, and was conditional on many features of the underlying model. Together, results suggest that conventional fit thresholds offer questionable utility in the context of IFA.

摘要

在探索性项目因子分析(IFA)中,研究人员可能会使用模型拟合统计量和常用的拟合阈值来帮助确定评估的维度。然而,这些指标和阈值可能会产生误导,因为它们是在具有连续而非分类指标的模型的验证性框架中开发的。本研究使用蒙特卡罗模拟方法调查了流行的模型拟合统计量(卡方、近似均方根误差、比较拟合指数和塔克-刘易斯指数)及其标准截断值,以检测潜在维度的最佳数量分类项目背后的设置。对从三个因素的人口结构中生成的数据进行了模型拟合,这些结构在因素负荷大小、因素相关性大小、指标数量以及是否包含交叉负荷或次要因素方面有所不同。这些阈值在不同的拟合统计量下的有效性不同,并且取决于基础模型的许多特征。总的来说,结果表明,传统的拟合阈值在 IFA 的背景下提供了可疑的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验