Suppr超能文献

拟合指数真的适合估计分类变量的因子数量吗?通过蒙特卡罗模拟得出的一些警示性发现。

Are fit indices really fit to estimate the number of factors with categorical variables? Some cautionary findings via Monte Carlo simulation.

机构信息

Decanato de Investigación Académica, Universidad Iberoamericana.

Facultad de Psicología, Universidad Autónoma de Madrid.

出版信息

Psychol Methods. 2016 Mar;21(1):93-111. doi: 10.1037/met0000064. Epub 2015 Dec 14.

Abstract

An early step in the process of construct validation consists of establishing the fit of an unrestricted "exploratory" factorial model for a prespecified number of common factors. For this initial unrestricted model, researchers have often recommended and used fit indices to estimate the number of factors to retain. Despite the logical appeal of this approach, little is known about the actual accuracy of fit indices in the estimation of data dimensionality. The present study aimed to reduce this gap by systematically evaluating the performance of 4 commonly used fit indices-the comparative fit index (CFI), the Tucker-Lewis index (TLI), the root mean square error of approximation (RMSEA), and the standardized root mean square residual (SRMR)-in the estimation of the number of factors with categorical variables, and comparing it with what is arguably the current golden rule, Horn's (1965) parallel analysis. The results indicate that the CFI and TLI provide nearly identical estimations and are the most accurate fit indices, followed at a step below by the RMSEA, and then by the SRMR, which gives notably poor dimensionality estimates. Difficulties in establishing optimal cutoff values for the fit indices and the general superiority of parallel analysis, however, suggest that applied researchers are better served by complementing their theoretical considerations regarding dimensionality with the estimates provided by the latter method.

摘要

构建验证过程的早期步骤包括为预定数量的常见因素建立不受限制的“探索性”因子模型的拟合。对于这个初始的无限制模型,研究人员经常推荐并使用拟合指数来估计保留的因素数量。尽管这种方法在逻辑上具有吸引力,但对于拟合指数在数据维度估计中的实际准确性知之甚少。本研究旨在通过系统评估 4 种常用拟合指数(比较拟合指数 (CFI)、塔克-刘易斯指数 (TLI)、近似均方根误差 (RMSEA) 和标准化均方根残差 (SRMR))在类别变量下估计因素数量的性能来缩小这一差距,并将其与可以说是当前黄金规则的霍恩(1965)平行分析进行比较。结果表明,CFI 和 TLI 提供了几乎相同的估计,是最准确的拟合指数,其次是 RMSEA,然后是 SRMR,后者给出的维度估计明显较差。然而,拟合指数的最佳截断值的建立困难以及平行分析的一般优越性表明,应用研究人员最好通过用后者提供的估计来补充他们关于维度的理论考虑,从而为他们提供更好的服务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验