Montoya Amanda K, Edwards Michael C
University of California Los Angeles, Los Angeles, CA, USA.
Arizona State University, Tempe, AZ, USA.
Educ Psychol Meas. 2021 Jun;81(3):413-440. doi: 10.1177/0013164420942899. Epub 2020 Aug 12.
Model fit indices are being increasingly recommended and used to select the number of factors in an exploratory factor analysis. Growing evidence suggests that the recommended cutoff values for common model fit indices are not appropriate for use in an exploratory factor analysis context. A particularly prominent problem in scale evaluation is the ubiquity of correlated residuals and imperfect model specification. Our research focuses on a scale evaluation context and the performance of four standard model fit indices: root mean square error of approximate (RMSEA), standardized root mean square residual (SRMR), comparative fit index (CFI), and Tucker-Lewis index (TLI), and two equivalence test-based model fit indices: RMSEAt and CFIt. We use Monte Carlo simulation to generate and analyze data based on a substantive example using the positive and negative affective schedule ( = 1,000). We systematically vary the number and magnitude of correlated residuals as well as nonspecific misspecification, to evaluate the impact on model fit indices in fitting a two-factor exploratory factor analysis. Our results show that all fit indices, except SRMR, are overly sensitive to correlated residuals and nonspecific error, resulting in solutions that are overfactored. SRMR performed well, consistently selecting the correct number of factors; however, previous research suggests it does not perform well with categorical data. In general, we do not recommend using model fit indices to select number of factors in a scale evaluation framework.
模型拟合指数越来越多地被推荐用于探索性因子分析中因子数量的选择。越来越多的证据表明,常用模型拟合指数的推荐临界值不适用于探索性因子分析的情境。量表评估中一个特别突出的问题是相关残差的普遍存在和模型设定的不完善。我们的研究聚焦于量表评估情境以及四个标准模型拟合指数的表现:近似均方根误差(RMSEA)、标准化均方根残差(SRMR)、比较拟合指数(CFI)和塔克-刘易斯指数(TLI),以及两个基于等价性检验的模型拟合指数:RMSEAt和CFIt。我们使用蒙特卡罗模拟,基于一个使用正负情感量表的实际例子(= 1,000)生成并分析数据。我们系统地改变相关残差的数量和大小以及非特定的模型误设,以评估在拟合双因子探索性因子分析时对模型拟合指数的影响。我们的结果表明,除了SRMR之外,所有拟合指数对相关残差和非特定误差都过度敏感,导致因子过多的解决方案。SRMR表现良好,始终能选择正确的因子数量;然而,先前的研究表明它在处理分类数据时表现不佳。总体而言,我们不建议在量表评估框架中使用模型拟合指数来选择因子数量。