Suppr超能文献

线粒体转录因子A(TFAM)是胎儿和成人肠道上皮细胞成熟所必需的。

TFAM is required for maturation of the fetal and adult intestinal epithelium.

作者信息

Srivillibhuthur Manasa, Warder Bailey N, Toke Natalie H, Shah Pooja P, Feng Qiang, Gao Nan, Bonder Edward M, Verzi Michael P

机构信息

Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, Philadelphia, PA 19140, USA.

Rutgers University, Department of Genetics, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA.

出版信息

Dev Biol. 2018 Jul 15;439(2):92-101. doi: 10.1016/j.ydbio.2018.04.015. Epub 2018 Apr 22.

Abstract

During development, the embryo transitions from a metabolism favoring glycolysis to a metabolism favoring mitochondrial respiration. How metabolic shifts regulate developmental processes, or how developmental processes regulate metabolic shifts, remains unclear. To test the requirement of mitochondrial function in developing endoderm-derived tissues, we genetically inactivated the mitochondrial transcription factor, Tfam, using the Shh-Cre driver. Tfam mutants did not survive postnatally, exhibiting defects in lung development. In the developing intestine, TFAM-loss was tolerated until late fetal development, during which the process of villus elongation was compromised. While progenitor cell populations appeared unperturbed, markers of enterocyte maturation were diminished and villi were blunted. Loss of TFAM was also tested in the adult intestinal epithelium, where enterocyte maturation was similarly dependent upon the mitochondrial transcription factor. While progenitor cells in the transit amplifying zone of the adult intestine remained proliferative, intestinal stem cell renewal was dependent upon TFAM, as indicated by molecular profiling and intestinal organoid formation assays. Taken together, these studies point to critical roles for the mitochondrial regulator TFAM for multiple aspects of intestinal development and maturation, and highlight the importance of mitochondrial regulators in tissue development and homeostasis.

摘要

在发育过程中,胚胎从有利于糖酵解的代谢转变为有利于线粒体呼吸的代谢。代谢转变如何调节发育过程,或者发育过程如何调节代谢转变,目前尚不清楚。为了测试线粒体功能在发育中的内胚层衍生组织中的需求,我们使用Shh-Cre驱动程序对线粒体转录因子Tfam进行了基因失活。Tfam突变体出生后无法存活,表现出肺部发育缺陷。在发育中的肠道中,TFAM缺失在胎儿发育后期之前是可以耐受的,在此期间绒毛伸长过程受到损害。虽然祖细胞群体似乎未受干扰,但肠上皮细胞成熟的标志物减少,绒毛变钝。我们还在成年肠道上皮中测试了TFAM的缺失情况,其中肠上皮细胞成熟同样依赖于线粒体转录因子。虽然成年肠道转运扩增区的祖细胞仍具有增殖能力,但分子分析和肠道类器官形成试验表明,肠道干细胞的更新依赖于TFAM。综上所述,这些研究表明线粒体调节因子TFAM在肠道发育和成熟的多个方面发挥着关键作用,并突出了线粒体调节因子在组织发育和稳态中的重要性。

相似文献

1
TFAM is required for maturation of the fetal and adult intestinal epithelium.
Dev Biol. 2018 Jul 15;439(2):92-101. doi: 10.1016/j.ydbio.2018.04.015. Epub 2018 Apr 22.
2
High levels of TFAM repress mammalian mitochondrial DNA transcription in vivo.
Life Sci Alliance. 2021 Aug 30;4(11). doi: 10.26508/lsa.202101034. Print 2021 Nov.
5
TFAM-deficient mouse skin fibroblasts - an ex vivo model of mitochondrial dysfunction.
Dis Model Mech. 2021 Aug 1;14(8). doi: 10.1242/dmm.048995. Epub 2021 Aug 25.
6
TFAM-Dependent Mitochondrial Metabolism Is Required for Alveolar Macrophage Maintenance and Homeostasis.
J Immunol. 2022 Mar 15;208(6):1456-1466. doi: 10.4049/jimmunol.2100741. Epub 2022 Feb 14.
8
A YY1-dependent increase in aerobic metabolism is indispensable for intestinal organogenesis.
Development. 2016 Oct 15;143(20):3711-3722. doi: 10.1242/dev.137992.
10
iMPAQT reveals that adequate mitohormesis from TFAM overexpression leads to life extension in mice.
Life Sci Alliance. 2024 Apr 25;7(7). doi: 10.26508/lsa.202302498. Print 2024 Jul.

引用本文的文献

2
Transcriptional and epigenomic profiling identifies YAP signaling as a key regulator of intestinal epithelium maturation.
Sci Adv. 2023 Jul 14;9(28):eadf9460. doi: 10.1126/sciadv.adf9460. Epub 2023 Jul 12.
4
PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing.
Nat Metab. 2023 Mar;5(3):495-515. doi: 10.1038/s42255-023-00766-2. Epub 2023 Mar 20.
5
PGC-1α activity and mitochondrial dysfunction in preterm infants.
Front Physiol. 2022 Sep 26;13:997619. doi: 10.3389/fphys.2022.997619. eCollection 2022.
6
Shoutai Wan Improves Embryo Survival by Regulating Aerobic Glycolysis of Trophoblast Cells in a Mouse Model of Recurrent Spontaneous Abortion.
Evid Based Complement Alternat Med. 2022 Sep 28;2022:8251503. doi: 10.1155/2022/8251503. eCollection 2022.
9
Proliferation in the developing intestine is regulated by the endosomal protein Endotubin.
Dev Biol. 2021 Dec;480:50-61. doi: 10.1016/j.ydbio.2021.08.009. Epub 2021 Aug 17.
10
Proteomic analysis of a murine model of lung hypoplasia induced by oligohydramnios.
Pediatr Pulmonol. 2021 Aug;56(8):2740-2750. doi: 10.1002/ppul.25525. Epub 2021 Jun 8.

本文引用的文献

3
Mitochondrial chaperone HSP-60 regulates anti-bacterial immunity via p38 MAP kinase signaling.
EMBO J. 2017 Apr 13;36(8):1046-1065. doi: 10.15252/embj.201694781. Epub 2017 Mar 10.
4
Interplay between metabolic identities in the intestinal crypt supports stem cell function.
Nature. 2017 Mar 16;543(7645):424-427. doi: 10.1038/nature21673. Epub 2017 Mar 8.
5
Morphogenesis and maturation of the embryonic and postnatal intestine.
Semin Cell Dev Biol. 2017 Jun;66:81-93. doi: 10.1016/j.semcdb.2017.01.011. Epub 2017 Feb 1.
6
A YY1-dependent increase in aerobic metabolism is indispensable for intestinal organogenesis.
Development. 2016 Oct 15;143(20):3711-3722. doi: 10.1242/dev.137992.
7
Mitochondrial function controls intestinal epithelial stemness and proliferation.
Nat Commun. 2016 Oct 27;7:13171. doi: 10.1038/ncomms13171.
8
Generation of intestinal surface: an absorbing tale.
Development. 2016 Jul 1;143(13):2261-72. doi: 10.1242/dev.135400.
9
The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites.
Cell. 2016 Jun 16;165(7):1708-1720. doi: 10.1016/j.cell.2016.05.018. Epub 2016 Jun 2.
10
Villification in the mouse: Bmp signals control intestinal villus patterning.
Development. 2016 Feb 1;143(3):427-36. doi: 10.1242/dev.130112. Epub 2015 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验