Suppr超能文献

结肠隐窝保护干细胞免受微生物群衍生代谢物的影响。

The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites.

作者信息

Kaiko Gerard E, Ryu Stacy H, Koues Olivia I, Collins Patrick L, Solnica-Krezel Lilianna, Pearce Edward J, Pearce Erika L, Oltz Eugene M, Stappenbeck Thaddeus S

机构信息

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.

Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Cell. 2016 Jun 16;165(7):1708-1720. doi: 10.1016/j.cell.2016.05.018. Epub 2016 Jun 2.

Abstract

In the mammalian intestine, crypts of Leiberkühn house intestinal epithelial stem/progenitor cells at their base. The mammalian intestine also harbors a diverse array of microbial metabolite compounds that potentially modulate stem/progenitor cell activity. Unbiased screening identified butyrate, a prominent bacterial metabolite, as a potent inhibitor of intestinal stem/progenitor proliferation at physiologic concentrations. During homeostasis, differentiated colonocytes metabolized butyrate likely preventing it from reaching proliferating epithelial stem/progenitor cells within the crypt. Exposure of stem/progenitor cells in vivo to butyrate through either mucosal injury or application to a naturally crypt-less host organism led to inhibition of proliferation and delayed wound repair. The mechanism of butyrate action depended on the transcription factor Foxo3. Our findings indicate that mammalian crypt architecture protects stem/progenitor cell proliferation in part through a metabolic barrier formed by differentiated colonocytes that consume butyrate and stimulate future studies on the interplay of host anatomy and microbiome metabolism.

摘要

在哺乳动物肠道中,利伯kühn隐窝在其底部容纳肠道上皮干细胞/祖细胞。哺乳动物肠道还含有多种微生物代谢物化合物,它们可能调节干细胞/祖细胞的活性。无偏向性筛选确定丁酸盐(一种主要的细菌代谢物)在生理浓度下是肠道干细胞/祖细胞增殖的有效抑制剂。在稳态期间,分化的结肠细胞代谢丁酸盐,可能阻止其到达隐窝内增殖的上皮干细胞/祖细胞。通过黏膜损伤或应用于天然无隐窝的宿主生物体,使体内的干细胞/祖细胞暴露于丁酸盐会导致增殖受到抑制和伤口修复延迟。丁酸盐的作用机制依赖于转录因子Foxo3。我们的研究结果表明,哺乳动物隐窝结构部分通过由消耗丁酸盐的分化结肠细胞形成的代谢屏障来保护干细胞/祖细胞增殖,并激发了对宿主解剖结构与微生物组代谢相互作用的未来研究。

相似文献

5
Feed your gut with caution!谨慎呵护你的肠道!
Transl Cancer Res. 2016 Sep;5(Suppl 3):S507-S513. doi: 10.21037/tcr.2016.09.13.

引用本文的文献

6
Short-chain fatty acids: key antiviral mediators of gut microbiota.短链脂肪酸:肠道微生物群的关键抗病毒介质
Front Immunol. 2025 Jul 25;16:1614879. doi: 10.3389/fimmu.2025.1614879. eCollection 2025.
10
Gut sulfide metabolism modulates behavior and brain bioenergetics.肠道硫化物代谢调节行为和大脑生物能量学。
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2503677122. doi: 10.1073/pnas.2503677122. Epub 2025 Jun 17.

本文引用的文献

1
HUMAN MICROBIOTA. Small molecules from the human microbiota.人类微生物群。来自人类微生物群的小分子。
Science. 2015 Jul 24;349(6246):1254766. doi: 10.1126/science.1254766. Epub 2015 Jul 23.
5
Host-microbe interactions shaping the gastrointestinal environment.宿主-微生物相互作用塑造胃肠道环境。
Trends Immunol. 2014 Nov;35(11):538-48. doi: 10.1016/j.it.2014.08.002. Epub 2014 Sep 11.
7
Modulation of immune development and function by intestinal microbiota.肠道微生物群对免疫发育和功能的调节。
Trends Immunol. 2014 Nov;35(11):507-17. doi: 10.1016/j.it.2014.07.010. Epub 2014 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验