Suppr超能文献

携带靶向肽 RGD 的基因工程磁小体的靶向热疗:光热疗法比磁热疗有效得多。

Targeted thermal therapy with genetically engineered magnetite magnetosomes@RGD: Photothermia is far more efficient than magnetic hyperthermia.

机构信息

Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, Paris Cedex 05 75205, France; Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, Bobigny F-93017, France.

Laboratoire de Bioénergétique Cellulaire, Institute of Biosciences and Biotechnologies of Aix Marseille (BIAM), UMR7265 CEA - CNRS - Aix Marseille Univ, CEA Cadarache, Saint Paul lez Durance 13108, France.

出版信息

J Control Release. 2018 Jun 10;279:271-281. doi: 10.1016/j.jconrel.2018.04.036. Epub 2018 Apr 21.

Abstract

Providing appropriate means for heat generation by low intratumoral nanoparticle concentrations is a major challenge for cancer nanotherapy. Here we propose RGD-tagged magnetosomes (magnetosomes@RGD) as a biogenic, genetically engineered, inorganic platform for multivalent thermal cancer treatment. Magnetosomes@RGD are biomagnetite nanoparticles synthesized by genetically modified magnetotactic bacteria thanks to a translational fusion of the RGD peptide with the magnetosomal protein MamC. Magnetosomes@RGD thus combine the high crystallinity of their magnetite core with efficient surface functionalization. The specific affinity of RGD was first quantified by single-cell magnetophoresis with a variety of cell types, including immune, muscle, endothelial, stem and cancer cells. The highest affinity and cellular uptake was observed with PC3 prostatic and HeLa uterine cancer cells. The efficiency of photothermia and magnetic hyperthermia was then compared on PC3 cells. Unexpectedly, photothermia was far more efficient than magnetic hyperthermia, which was almost totally inhibited by the cellular environment. RGD targeting was then assessed in vivo at tumor site, in mice bearing PC3 tumors. As a result, we demonstrate that targeted magnetic nanoparticles could generate heat on a therapeutic level after systemic administration, but only under laser excitation, and successfully inhibit tumor progression.

摘要

为低肿瘤内纳米颗粒浓度产生适当的热量提供手段是癌症纳米治疗的主要挑战。在这里,我们提出 RGD 标记的磁小体(magnetosomes@RGD)作为一种生物衍生的、经过基因工程改造的无机平台,用于多价热癌症治疗。Magnetosomes@RGD 是通过将 RGD 肽与磁小体蛋白 MamC 进行翻译融合,由经过基因改造的趋磁细菌合成的生物磁铁矿纳米颗粒。因此,Magnetosomes@RGD 结合了其磁铁矿核心的高结晶度和高效的表面功能化。首先通过单细胞磁泳对各种细胞类型(包括免疫细胞、肌肉细胞、内皮细胞、干细胞和癌细胞)进行了 RGD 特异性的定量分析。与前列腺癌 PC3 细胞和宫颈癌 HeLa 细胞的亲和力和细胞摄取率最高。然后比较了 PC3 细胞上光热疗和磁热疗的效率。出乎意料的是,光热疗比磁热疗有效得多,而磁热疗几乎完全被细胞环境所抑制。然后在携带 PC3 肿瘤的小鼠的肿瘤部位评估了 RGD 靶向性。结果表明,经系统给药后,靶向磁性纳米颗粒可以在治疗水平上产生热量,但只能在激光激发下,并成功抑制肿瘤进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验