Suppr超能文献

基于磁性纳米颗粒的成像引导精准热疗

Imaging-guided precision hyperthermia with magnetic nanoparticles.

作者信息

Shakeri-Zadeh Ali, Bulte Jeff W M

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Nat Rev Bioeng. 2025 Mar;3(3):245-260. doi: 10.1038/s44222-024-00257-3. Epub 2024 Nov 7.

Abstract

Magnetic nanoparticles, including those formed of superparamagnetic iron oxides (SPIOs), are employed in various magnetic imaging and therapeutic techniques. In vivo imaging techniques based on the detection of magnetic nanoparticles inside the body include magnetic resonance imaging (MRI), magnetic particle imaging (MPI), magneto-motive ultrasonography (MMUS) and magneto-photoacoustic imaging (MPAI). Preclinical data indicate that the conditions required to heat up magnetic nanoparticles, including energy considerations, particle modifications, localization and exposure time, can be dynamically modulated during a single treatment procedure by monitoring imaging data acquired from the same magnetic nanoparticles. This Review explores the potential use of magnetic-nanoparticle-mediated imaging techniques combined with magnetic fluid hyperthermia (MFH) to selectively and precisely heat tumour locations while avoiding damage to surrounding healthy tissue. Imaging-guided MFH could provide individualized treatment plans based on information about the biodistribution of magnetic nanoparticles within the tumour and adjacent organs, as well as the volumetric distribution of the thermal dose. Requirements for the clinical translation of MFH-enabled magnetic imaging techniques are also discussed - the development of magnetic nanoparticle formulations with a favourable biosafety profile, optimal magnetic heating properties and maximal magnetic imaging signals; and the integration of magnetic imaging and heating hardware into a single platform.

摘要

磁性纳米颗粒,包括由超顺磁性氧化铁(SPIO)形成的那些,被用于各种磁成像和治疗技术中。基于检测体内磁性纳米颗粒的体内成像技术包括磁共振成像(MRI)、磁粒子成像(MPI)、磁动力超声成像(MMUS)和磁光声成像(MPAI)。临床前数据表明,加热磁性纳米颗粒所需的条件,包括能量考量、颗粒修饰、定位和暴露时间,可在单个治疗过程中通过监测从相同磁性纳米颗粒获取的成像数据进行动态调节。本综述探讨了磁性纳米颗粒介导的成像技术与磁流体热疗(MFH)相结合的潜在用途,以选择性地、精确地加热肿瘤部位,同时避免对周围健康组织造成损伤。成像引导的MFH可根据磁性纳米颗粒在肿瘤和相邻器官内的生物分布信息以及热剂量的体积分布提供个性化治疗方案。还讨论了支持MFH的磁成像技术临床转化的要求——开发具有良好生物安全性、最佳磁热性能和最大磁成像信号的磁性纳米颗粒制剂;以及将磁成像和加热硬件集成到单个平台中。

相似文献

1
Imaging-guided precision hyperthermia with magnetic nanoparticles.
Nat Rev Bioeng. 2025 Mar;3(3):245-260. doi: 10.1038/s44222-024-00257-3. Epub 2024 Nov 7.
3
Nanoparticles based image-guided thermal therapy and temperature feedback.
J Mater Chem B. 2024 Dec 18;13(1):54-102. doi: 10.1039/d4tb01416b.
4
5
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
6
Information-Providing Magnetic Supraparticles: Particle Designs to Record Environmental Stimuli with Readout by Magnetic Particle Spectroscopy.
Acc Mater Res. 2025 May 23;6(7):842-852. doi: 10.1021/accountsmr.5c00027. eCollection 2025 Jul 25.
7
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
8
Nickel Ferrite Nanoparticles for In Vivo Multimodal Magnetic Resonance and Magnetic Particle Imaging.
ACS Appl Nano Mater. 2025 Jul 16;8(29):14867-14881. doi: 10.1021/acsanm.5c03013. eCollection 2025 Jul 25.
9
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
10
Ranking Magnetic Colloid Performance for Magnetic Particle Imaging and Magnetic Particle Hyperthermia.
Adv Funct Mater. 2025 Jan 9;35(2):2412321. doi: 10.1002/adfm.202412321. Epub 2024 Oct 18.

引用本文的文献

1
Defect-engineered amorphous-like nanointerceptors for T MRI-Guided treatment of reperfusion injury.
J Nanobiotechnology. 2025 Aug 30;23(1):596. doi: 10.1186/s12951-025-03624-3.
3
Magnetic hyperthermia in oncology: Nanomaterials-driven combinatorial strategies for synergistic therapeutic gains.
Mater Today Bio. 2025 Jul 9;33:102070. doi: 10.1016/j.mtbio.2025.102070. eCollection 2025 Aug.
4
Advances in nanotechnology for colorectal cancer: a smart targeting and theranostics approach.
Med Oncol. 2025 Jul 18;42(8):346. doi: 10.1007/s12032-025-02910-2.
5
Spillover can limit accurate signal quantification in MPI.
Npj Imaging. 2025 May 6;3(1):20. doi: 10.1038/s44303-025-00084-0.
6
Rational Design of Safer Inorganic Nanoparticles via Mechanistic Modeling-Informed Machine Learning.
ACS Nano. 2025 Jun 17;19(23):21538-21555. doi: 10.1021/acsnano.5c03590. Epub 2025 Jun 3.
8
Exploring the diagnostic potential: magnetic particle imaging for brain diseases.
Mil Med Res. 2025 Apr 27;12(1):18. doi: 10.1186/s40779-025-00603-5.
9
Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications.
Nanoscale Adv. 2025 Mar 24;7(10):2818-2886. doi: 10.1039/d5na00195a. eCollection 2025 May 13.
10
Rational Design of Safer Inorganic Nanoparticles via Mechanistic Modeling-informed Machine Learning.
Res Sq. 2025 Feb 18:rs.3.rs-5960303. doi: 10.21203/rs.3.rs-5960303/v1.

本文引用的文献

1
Magnetic Hyperthermia Therapy for High-Grade Glioma: A State-of-the-Art Review.
Pharmaceuticals (Basel). 2024 Feb 26;17(3):300. doi: 10.3390/ph17030300.
2
Integrable Magnetic Fluid Hyperthermia Systems for 3D Magnetic Particle Imaging.
Nanotheranostics. 2024 Feb 12;8(2):163-178. doi: 10.7150/ntno.90360. eCollection 2024.
3
The LMIT: Light-mediated minimally-invasive theranostics in oncology.
Theranostics. 2024 Jan 1;14(1):341-362. doi: 10.7150/thno.87783. eCollection 2024.
5
HYPER: pre-clinical device for spatially-confined magnetic particle hyperthermia.
Int J Hyperthermia. 2023;40(1):2272067. doi: 10.1080/02656736.2023.2272067. Epub 2023 Oct 24.
6
Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality.
Adv Mater. 2024 Apr;36(17):e2306450. doi: 10.1002/adma.202306450. Epub 2023 Dec 7.
7
Magnetic particle imaging deblurring with dual contrastive learning and adversarial framework.
Comput Biol Med. 2023 Oct;165:107461. doi: 10.1016/j.compbiomed.2023.107461. Epub 2023 Sep 9.
8
Drug-Loaded Lipid Magnetic Nanoparticles for Combined Local Hyperthermia and Chemotherapy against Glioblastoma Multiforme.
ACS Nano. 2023 Sep 26;17(18):18441-18455. doi: 10.1021/acsnano.3c06085. Epub 2023 Sep 12.
9
The exit of nanoparticles from solid tumours.
Nat Mater. 2023 Oct;22(10):1261-1272. doi: 10.1038/s41563-023-01630-0. Epub 2023 Aug 17.
10
Magnetically controlled drug delivery and hyperthermia effects of core-shell Cu@MnO nanoparticles towards cancer cells in vitro.
Int J Biol Macromol. 2023 Sep 30;249:126071. doi: 10.1016/j.ijbiomac.2023.126071. Epub 2023 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验