文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Zn 掺杂具有高磁化率和光热效率的氧化铁纳米颗粒用于癌症治疗。

Zn doped iron oxide nanoparticles with high magnetization and photothermal efficiency for cancer treatment.

机构信息

Biophysics Group, Department of Physics and Astronomy, University College London, Gower street, London WC1E 6BT, UK.

UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle street, London W1S 4BS, UK.

出版信息

J Mater Chem B. 2023 Jan 25;11(4):787-801. doi: 10.1039/d2tb01338j.


DOI:10.1039/d2tb01338j
PMID:36472454
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9890495/
Abstract

Magnetic nanoparticles (NPs) are powerful agents to induce hyperthermia in tumours upon the application of an alternating magnetic field or an infrared laser. Dopants have been investigated to alter different properties of materials. Herein, the effect of zinc doping into iron oxide NPs on their magnetic properties and structural characteristics has been investigated in-depth. A high temperature reaction with autogenous pressure was used to prepare iron oxide and zinc ferrite NPs of same size and morphology for direct comparison. Pressure was key in obtaining high quality nanocrystals with reduced lattice strain (27% less) and enhanced magnetic properties. ZnFeO NPs with small size of 10.2 ± 2.5 nm and very high saturation magnetisation of 142 ± 9 emu g were obtained. Aqueous dispersion of the NPs showed long term magnetic (up to 24 months) and colloidal stability (at least 6 d) at physiologically mimicking conditions. The samples had been kept in the fridge and had been stable for four years. The biocompatibility of ZnFeO NPs was next evaluated by metabolic activity, membrane integrity and clonogenic assays, which show an equivalence to that of iron oxide NPs. Zinc doping decreased the bandgap of the material by 22% making it a more efficient photothermal agent than iron oxide-based ones. Semiconductor photo-hyperthermia was shown to outperform magneto-hyperthermia in cancer cells, reaching the same temperature 17 times faster whilst using 20 times less material (20 mg ml. 1 mg ml). Magnetothermal conversion was minimally hindered in the cellular confinement whilst photothermal efficiency remained unchanged. Photothermia treatment alone achieved 100% cell death after 10 min of treatment compared to only 30% cell death achieved with magnetothermia at clinically relevant settings for each at their best performing concentration. Altogether, these results suggest that the biocompatible and superparamagnetic zinc ferrite NPs could be a next biomaterial of choice for photo-hyperthermia, which could outperform current iron oxide NPs for magnetic hyperthermia.

摘要

磁性纳米粒子(NPs)是在应用交变磁场或红外激光时在肿瘤中诱导热疗的有效试剂。掺杂剂已被研究用于改变材料的不同性质。在此,深入研究了锌掺杂进入氧化铁 NPs 对其磁性和结构特性的影响。使用高温自生压力反应来制备具有相同尺寸和形态的氧化铁和锌铁氧体 NPs,以便直接进行比较。压力是获得具有低晶格应变(低 27%)和增强磁性的高质量纳米晶体的关键。获得了尺寸为 10.2 ± 2.5nm 且具有非常高饱和磁化强度(142 ± 9emu/g)的小尺寸 ZnFeO NPs。在生理模拟条件下,NP 的水性分散体显示出长期磁性(长达 24 个月)和胶体稳定性(至少 6d)。在冰箱中保存样品 4 年后,其仍稳定。接下来通过代谢活性、膜完整性和集落形成测定评估了 ZnFeO NPs 的生物相容性,结果表明其与氧化铁 NPs 相当。锌掺杂使材料的带隙降低了 22%,使其比基于氧化铁的材料更有效地作为光热试剂。在癌细胞中,半导体光热疗法比磁热疗法表现更好,达到相同温度的速度快 17 倍,而使用的材料少 20 倍(20mg/ml 比 1mg/ml)。在细胞限制中,磁热转换受到的阻碍最小,而光热效率保持不变。单独的光热治疗在 10 分钟的治疗后即可实现 100%的细胞死亡,而在临床相关设置下,磁热治疗仅达到 30%的细胞死亡,在每种情况下,最佳浓度下的细胞死亡率均为 30%。总的来说,这些结果表明,生物相容的超顺磁性锌铁氧体 NPs 可能成为光热疗法的下一个生物材料选择,在磁热疗法方面,其性能优于当前的氧化铁 NPs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/96c593b7ee6f/d2tb01338j-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/c02a7ebe3a2d/d2tb01338j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/ff203c48f3f1/d2tb01338j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/c393aa04ddbd/d2tb01338j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/7063e887da1e/d2tb01338j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/40bd00786e27/d2tb01338j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/4a4b717f7edc/d2tb01338j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/ae3de856b879/d2tb01338j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/96c593b7ee6f/d2tb01338j-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/c02a7ebe3a2d/d2tb01338j-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/ff203c48f3f1/d2tb01338j-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/c393aa04ddbd/d2tb01338j-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/7063e887da1e/d2tb01338j-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/40bd00786e27/d2tb01338j-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/4a4b717f7edc/d2tb01338j-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/ae3de856b879/d2tb01338j-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f82/9890495/96c593b7ee6f/d2tb01338j-f8.jpg

相似文献

[1]
Zn doped iron oxide nanoparticles with high magnetization and photothermal efficiency for cancer treatment.

J Mater Chem B. 2023-1-25

[2]
Simultaneous Enhancement of Magnetothermal and Photothermal Responses by Zn, Co Co-Doped Ferrite Nanoparticles.

Small. 2022-12

[3]
Adsorption of proteins on oral Zn doped iron oxide nanoparticles in mouse stomach and : triggering nanoparticle aggregation.

Nanoscale. 2020-11-19

[4]
Evaluation of zinc-doped magnetite nanoparticle toxicity in the liver and kidney of mice after sub-chronic intragastric administration.

Toxicol Res (Camb). 2015-11-18

[5]
Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia.

J Colloid Interface Sci. 2020-11-1

[6]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

[7]
Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance.

Chem Mater. 2021-5-11

[8]
Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.

Int J Mol Sci. 2020-7-22

[9]
Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.

Einstein (Sao Paulo). 2019-8-1

[10]
The cell uptake properties and hyperthermia performance of ZnFeO/SiO nanoparticles as magnetic hyperthermia agents.

R Soc Open Sci. 2020-1-15

引用本文的文献

[1]
A strategy for challenging tumorous bone regeneration by borosilicate bioactive glass boosting moderate magnetic hyperthermia.

Nat Commun. 2025-8-28

[2]
Iron Oxide Nanoparticles: Parameters for Optimized Photoconversion Efficiency in Synergistic Cancer Treatment.

J Funct Biomater. 2024-7-25

[3]
The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent.

ACS Omega. 2023-12-21

[4]
Assessment of the synthesis method of FeO nanocatalysts and its effectiveness in viscosity reduction and heavy oil upgrading.

Sci Rep. 2023-10-24

[5]
A Comparative and Critical Analysis for In Vitro Cytotoxic Evaluation of Magneto-Crystalline Zinc Ferrite Nanoparticles Using MTT, Crystal Violet, LDH, and Apoptosis Assay.

Int J Mol Sci. 2023-8-16

本文引用的文献

[1]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[2]
Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications.

Nanoscale. 2021-9-2

[3]
Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia.

Adv Mater. 2021-7

[4]
Challenges and recommendations for magnetic hyperthermia characterization measurements.

Int J Hyperthermia. 2021

[5]
Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers.

Nanomaterials (Basel). 2020-8-7

[6]
Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications.

Nanoscale. 2020-7-23

[7]
A Multiparametric Evaluation of Quantum Dot Size and Surface-Grafted Peptide Density on Cellular Uptake and Cytotoxicity.

Bioconjug Chem. 2020-4-15

[8]
Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting.

Adv Healthc Mater. 2020-1

[9]
Model-Based Nanoengineered Pharmacokinetics of Iron-Doped Copper Oxide for Nanomedical Applications.

Angew Chem Int Ed Engl. 2020-1-27

[10]
Antibody-targeting of ultra-small nanoparticles enhances imaging sensitivity and enables longitudinal tracking of multiple myeloma.

Nanoscale. 2019-10-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索