Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, United States; Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States.
Biochim Biophys Acta Proteins Proteom. 2018 Aug;1866(8):899-912. doi: 10.1016/j.bbapap.2018.04.008. Epub 2018 Apr 21.
Allosteric interactions of the Hsp90 chaperones with cochaperones and diverse protein clients can often exhibit distinct asymmetric features that determine regulatory mechanisms and cellular functions in many signaling networks. The recent crystal structures of the mitochondrial Hsp90 isoform TRAP1 in complexes with ATP analogs have provided first evidence of significant asymmetry in the closed dimerized state that triggers independent activity of the chaperone protomers, whereby preferential hydrolysis of the buckled protomer is followed by conformational flipping between protomers and hydrolysis of the second protomer. Despite significant insights in structural characterizations of the TRAP1 chaperone, the atomistic details and mechanics of allosteric interactions that couple sequential ATP hydrolysis with asymmetric conformational switching in the TRAP1 protomers remain largely unknown. In this work, we explored atomistic and coarse-grained simulations of the TRAP1 dimer structures in combination with the ensemble-based network modeling and perturbation response scanning of residue interaction networks to probe salient features underlying allosteric signaling mechanism. This study has revealed that key effector sites that orchestrate allosteric interactions occupy the ATP binding region and N-terminal interface of the buckled protomer, whereas the main sensors of allosteric signals that drive functional conformational changes during ATPase cycle are consolidated near the client binding region of the straight protomer, channeling the energy of ATP hydrolysis for client remodeling. The community decomposition analysis of the interaction networks and reconstruction of allosteric communication pathways in the TRAP1 structures have quantified mechanism of allosteric regulation, revealing control points and interactions that coordinate asymmetric switching during ATP hydrolysis.
Hsp90 伴侣蛋白与共伴侣蛋白和各种蛋白质客户的变构相互作用通常表现出独特的不对称特征,这些特征决定了许多信号网络中的调节机制和细胞功能。最近,线粒体 Hsp90 同工型 TRAP1 与 ATP 类似物复合物的晶体结构首次提供了封闭二聚化状态下显著不对称的证据,这种不对称性触发了伴侣蛋白原聚体的独立活性,从而优先水解弯曲的原聚体,然后在原聚体之间发生构象翻转和第二个原聚体的水解。尽管对 TRAP1 伴侣蛋白的结构特征有了重要的了解,但与 TRAP1 原聚体中连续的 ATP 水解和不对称构象转换相偶联的变构相互作用的原子细节和力学仍在很大程度上未知。在这项工作中,我们结合基于集合的网络建模和残基相互作用网络的扰动响应扫描,探索了 TRAP1 二聚体结构的原子和粗粒化模拟,以探测变构信号机制的基础特征。这项研究表明,协调变构相互作用的关键效应位点占据了弯曲原聚体的 ATP 结合区域和 N 端界面,而在 ATP 酶循环过程中驱动功能构象变化的变构信号的主要传感器则集中在直原聚体的客户结合区域附近,将 ATP 水解的能量用于客户重塑。TRAP1 结构中相互作用网络的社区分解分析和变构通信途径的重建,定量了变构调节的机制,揭示了在 ATP 水解过程中协调不对称切换的控制点和相互作用。