Xu Jixian, Voznyy Oleksandr, Liu Mengxia, Kirmani Ahmad R, Walters Grant, Munir Rahim, Abdelsamie Maged, Proppe Andrew H, Sarkar Amrita, García de Arquer F Pelayo, Wei Mingyang, Sun Bin, Liu Min, Ouellette Olivier, Quintero-Bermudez Rafael, Li Jie, Fan James, Quan Lina, Todorovic Petar, Tan Hairen, Hoogland Sjoerd, Kelley Shana O, Stefik Morgan, Amassian Aram, Sargent Edward H
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), and Physical Sciences and Engineering Division, Thuwal, Saudi Arabia.
Nat Nanotechnol. 2018 Jun;13(6):456-462. doi: 10.1038/s41565-018-0117-z. Epub 2018 Apr 23.
Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size. Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon . Advances in surface passivation, combined with advances in device structures , have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 2016 . Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to 300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (J) and open-circuit voltage (V), as seen in previous reports. Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (600 nm) and record values of J (32 mA cm) are fabricated. The V improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.
胶体量子点(CQD)是很有前景的光伏(PV)材料,因为其吸收光谱可通过纳米晶体尺寸进行广泛调节。它们的带隙可调性不仅能优化单结电池,还能制造出与钙钛矿和硅互补的多结电池。表面钝化技术的进步,结合器件结构的进步,使得认证功率转换效率(PCE)在2016年升至11%。如果能增加器件厚度以在高填充因子(FF)下最大化光捕获,性能还能进一步提升。然而,目前由于伴随的光载流子扩散长度,有源层厚度限制在约300nm。迄今为止,比这更厚的CQD器件通常会出现短路电流(J)和开路电压(V)下降的情况,如先前报道所示。在此,我们报告一种用于CQD固体的基质工程策略,该策略能显著提高光载流子扩散长度。我们发现一种无机 - 胺混合配位络合物能使我们生成高质量的二维(2D)受限无机基质,该基质能在原子尺度上规划纳米颗粒间距。这种策略能减少固体中的结构和能量无序,并同时提高CQD的堆积密度和均匀性。因此,制造出了有源层厚度几乎翻倍(约600nm)且J值创纪录(32 mA cm)的平面器件。随着电流增加,V有所改善。我们展示了认证效率达12%的CQD太阳能电池。