Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada.
King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), and Physical Sciences and Engineering Division, 4700 KAUST, Thuwal 23955-6900, Saudi Arabia.
Nat Mater. 2017 Feb;16(2):258-263. doi: 10.1038/nmat4800. Epub 2016 Nov 14.
Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (V) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher V and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.
无序半导体材料中的带尾会导致开路电压 (V) 的损失,并抑制光伏器件中的载流子输运。对于胶体量子点 (CQD) 薄膜,其有望实现低成本、大面积、空气稳定的光伏,带尾由 CQD 合成多分散性和配体交换过程中的不均匀聚集决定。在这里,我们引入了一种新的合成溶液相配体交换 CQD 墨水的方法,这种方法可以实现平坦的能量势垒和有利的高堆积密度。在固态下,与之前用于光伏的最佳 CQD 薄膜相比,这些材料表现出更窄的带尾和减少的能量漏斗。因此,我们展示了具有更高 V 和更有效电荷注入到电子受体的太阳能电池,允许使用更接近最佳带隙来吸收更多的光。这使得可以通过溶液相配体交换制造 CQD 太阳能电池,其经过认证的功率转换效率为 11.28%。这些器件在未封装的情况下,在空气中储存超过 1000 小时后仍保持稳定。