Suppr超能文献

界面异质结助力高效硫化铅量子点太阳能电池。

Interfacial Heterojunction Enables High Efficient PbS Quantum Dot Solar Cells.

作者信息

Zhang Li, Chen Yong, Cao Shuang, Yuan Defei, Tang Xu, Wang Dengke, Gao Yajun, Zhang Junjie, Zhao Yongbiao, Yang Xichuan, Lu Zhenghong, Fan Quli, Sun Bin

机构信息

State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Rd., Nanjing, 210023, China.

Department of Physics, Center for Optoelectronics Engineering Research, Yunnan University, Kunming, 650091, China.

出版信息

Adv Sci (Weinh). 2024 Jul;11(26):e2402756. doi: 10.1002/advs.202402756. Epub 2024 May 2.

Abstract

Colloidal quantum dots (CQDs) are promising optoelectronic materials for solution-processed thin film optoelectronic devices. However, the large surface area with abundant surface defects of CQDs and trap-assisted non-radiative recombination losses at the interface between CQDs and charge-transport layer limit their optoelectronic performance. To address this issue, an interface heterojunction strategy is proposed to protect the CQDs interface by incorporating a thin layer of polyethyleneimine (PEIE) to suppress trap-assisted non-radiative recombination losses. This thin layer not only acts as a protective barrier but also modulates carrier recombination and extraction dynamics by forming heterojunctions at the buried interface between CQDs and charge-transport layer, thereby enhancing the interface charge extraction efficiency. This enhancement is demonstrated by the shortened lifetime of carrier extraction from 0.72 to 0.46 ps. As a result, the resultant PbS CQD solar cells achieve a power-conversion-efficiency (PCE) of 13.4% compared to 12.2% without the heterojunction.

摘要

胶体量子点(CQDs)是用于溶液处理薄膜光电器件的有前途的光电子材料。然而,CQDs的大表面积和丰富的表面缺陷以及CQDs与电荷传输层之间界面处的陷阱辅助非辐射复合损失限制了它们的光电子性能。为了解决这个问题,提出了一种界面异质结策略,通过引入一层聚乙烯亚胺(PEIE)来保护CQDs界面,以抑制陷阱辅助非辐射复合损失。这一薄层不仅起到保护屏障的作用,还通过在CQDs与电荷传输层之间的掩埋界面处形成异质结来调节载流子复合和提取动力学,从而提高界面电荷提取效率。从0.72皮秒缩短到0.46皮秒的载流子提取寿命证明了这种提高。结果,所得的PbS CQD太阳能电池实现了13.4%的功率转换效率(PCE),而没有异质结时为12.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a3c/11234412/db6c4e9eaa1c/ADVS-11-2402756-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验