Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA.
Nat Commun. 2018 Apr 23;9(1):1609. doi: 10.1038/s41467-018-04073-3.
Gamma-ray detection and spectroscopy is the quantitative determination of their energy spectra, and is of critical value and critically important in diverse technological and scientific fields. Here we report an improved melt growth method for cesium lead bromide and a special detector design with asymmetrical metal electrode configuration that leads to a high performance at room temperature. As-grown centimeter-sized crystals possess extremely low impurity levels (below 10 p.p.m. for total 69 elements) and detectors achieve 3.9% energy resolution for 122 keV Co gamma-ray and 3.8% for 662 keV Cs gamma-ray. Cesium lead bromide is unique among all gamma-ray detection materials in that its hole transport properties are responsible for the high performance. The superior mobility-lifetime product for holes (1.34 × 10 cm V) derives mainly from the record long hole carrier lifetime (over 25 μs). The easily scalable crystal growth and high-energy resolution, highlight cesium lead bromide as an exceptional next generation material for room temperature radiation detection.
伽马射线探测和光谱学是对其能谱进行定量测定,这在各种技术和科学领域都具有关键价值和至关重要的意义。在这里,我们报告了一种改进的溴化铯铅的熔融生长方法,以及一种具有非对称金属电极结构的特殊探测器设计,这使得在室温下具有高性能。生长出的厘米级晶体具有极低的杂质水平(对于所有 69 种元素,总杂质含量低于 10ppm),探测器对 122keV Co 伽马射线的能量分辨率达到 3.9%,对 662keV Cs 伽马射线的能量分辨率达到 3.8%。在所有伽马射线探测材料中,溴化铯铅的独特之处在于其空穴输运性能使其具有优异的性能。空穴的迁移率-寿命乘积(1.34×10cmV)非常高,主要源于空穴载流子寿命(超过 25μs)的创纪录的长。这种易于扩展的晶体生长和高能量分辨率,突出了溴化铯铅作为一种用于室温辐射探测的卓越下一代材料。