Suppr超能文献

通过溶液处理的有机-无机钙钛矿检测X射线光子。

Detection of X-ray photons by solution-processed organic-inorganic perovskites.

作者信息

Yakunin Sergii, Sytnyk Mykhailo, Kriegner Dominik, Shrestha Shreetu, Richter Moses, Matt Gebhard J, Azimi Hamed, Brabec Christoph J, Stangl Julian, Kovalenko Maksym V, Heiss Wolfgang

机构信息

Institute of Semiconductor and Solid State Physics, University Linz, Altenbergerstraße 69, Linz 4040 Austria.

Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland.

出版信息

Nat Photonics. 2015 Jul;9(7):444-449. doi: 10.1038/nphoton.2015.82. Epub 2015 May 25.

Abstract

The evolution of real-time medical diagnostic tools such as angiography and computer tomography from radiography based on photographic plates was enabled by the development of integrated solid-state X-ray photon detectors, based on conventional solid-state semiconductors. Recently, for optoelectronic devices operating in the visible and near infrared spectral regions, solution-processed organic and inorganic semiconductors have also attracted immense attention. Here we demonstrate a possibility to use such inexpensive semiconductors for sensitive detection of X-ray photons by direct photon-to-current conversion. In particular, methylammonium lead iodide perovskite (CHNHPbI) offers a compelling combination of fast photoresponse and a high absorption cross-section for X-rays, owing to the heavy Pb and I atoms. Solution processed photodiodes as well as photoconductors are presented, exhibiting high values of X-ray sensitivity (up to 25 µC mGy cm) and responsivity (1.9×10 carriers/photon), which are commensurate with those obtained by the current solid-state technology.

摘要

基于传统固态半导体的集成固态X射线光子探测器的发展,使得血管造影和计算机断层扫描等实时医学诊断工具从基于照相底片的射线照相术演变而来。最近,对于在可见光和近红外光谱区域工作的光电器件,溶液处理的有机和无机半导体也引起了极大关注。在此,我们展示了通过直接光子到电流转换,使用这种廉价半导体进行X射线光子灵敏检测的可能性。特别是,由于重的Pb和I原子,甲基铵碘化铅钙钛矿(CH₃NH₃PbI₃)具有快速光响应和对X射线的高吸收截面的诱人组合。展示了溶液处理的光电二极管以及光电导体,其表现出高的X射线灵敏度值(高达25 μC mGy⁻¹ cm⁻²)和响应度(1.9×10⁴ 载流子/光子),这与当前固态技术所获得的值相当。

相似文献

1
Detection of X-ray photons by solution-processed organic-inorganic perovskites.
Nat Photonics. 2015 Jul;9(7):444-449. doi: 10.1038/nphoton.2015.82. Epub 2015 May 25.
2
Flexible, Printable Soft-X-Ray Detectors Based on All-Inorganic Perovskite Quantum Dots.
Adv Mater. 2019 Jul;31(30):e1901644. doi: 10.1002/adma.201901644. Epub 2019 Jun 6.
3
Electrically Modulated Near-Infrared/Visible Light Dual-Mode Perovskite Photodetectors.
ACS Appl Mater Interfaces. 2022 Jun 8;14(22):25824-25833. doi: 10.1021/acsami.2c01796. Epub 2022 May 25.
4
Printable organometallic perovskite enables large-area, low-dose X-ray imaging.
Nature. 2017 Oct 4;550(7674):87-91. doi: 10.1038/nature24032.
5
Ultrasensitive 3D Aerosol-Jet-Printed Perovskite X-ray Photodetector.
ACS Nano. 2021 Mar 23;15(3):4077-4084. doi: 10.1021/acsnano.0c07993. Epub 2021 Feb 17.
6
High-Energy Photon Spectroscopy Using All Solution-Processed Heterojunctioned Surface-Modified Perovskite Single Crystals.
ACS Appl Mater Interfaces. 2019 Sep 11;11(36):33399-33408. doi: 10.1021/acsami.9b09381. Epub 2019 Aug 29.
8
Interfacial Engineering Enables Perovskite Heteroepitaxial Growth on Black Phosphorus for Flexible X-ray Detectors.
Small. 2023 Nov;19(46):e2303229. doi: 10.1002/smll.202303229. Epub 2023 Jul 20.
9
Ultrahigh-Flux X-ray Detection by a Solution-Grown Perovskite CsPbBr Single-Crystal Semiconductor Detector.
Adv Mater. 2023 Jun;35(25):e2211840. doi: 10.1002/adma.202211840. Epub 2023 Apr 29.

引用本文的文献

1
2
Lattice Anchoring Stabilizes α-FAPbI Perovskite for High-Performance X-Ray Detectors.
Nanomicro Lett. 2025 Jul 29;18(1):14. doi: 10.1007/s40820-025-01856-4.
3
Tuning Self-Trapped Exciton Emission in 1D White-Light Emitting Perovskites Through Halide Composition and Synthesis Route.
ACS Omega. 2025 Jun 9;10(24):25708-25719. doi: 10.1021/acsomega.5c01452. eCollection 2025 Jun 24.
4
Advances in Metal Halide Perovskite Scintillators for X-Ray Detection.
Nanomicro Lett. 2025 May 23;17(1):275. doi: 10.1007/s40820-025-01772-7.
5
Ultrafast Superradiant Scintillation from Isolated Weakly Confined Perovskite Nanocrystals.
Adv Mater. 2025 May;37(18):e2500846. doi: 10.1002/adma.202500846. Epub 2025 Mar 21.
6
Halide perovskites, a game changer for future medical imaging technology.
Biophys Rev (Melville). 2025 Jan 22;6(1):011302. doi: 10.1063/5.0217068. eCollection 2025 Mar.
7
Band Tailoring Enabled Perovskite Devices for X-Ray to Near-Infrared Photodetection.
Adv Sci (Weinh). 2025 Mar;12(9):e2414259. doi: 10.1002/advs.202414259. Epub 2025 Jan 14.
8
Nonstoichiometry Promoted Solventless Recrystallization of a Thick and Compact CsPbBr Film for Real-Time Dynamic X-Ray Imaging.
Adv Sci (Weinh). 2024 Dec;11(46):e2407314. doi: 10.1002/advs.202407314. Epub 2024 Oct 21.
9
Reproducible high-quality perovskite single crystals by flux-regulated crystallization with a feedback loop.
Nat Synth. 2024;3(10):1212-1220. doi: 10.1038/s44160-024-00576-8. Epub 2024 Jun 18.
10
Accelerated Discovery of Halide Perovskite Materials via Computational Methods: A Review.
Nanomaterials (Basel). 2024 Jul 8;14(13):1167. doi: 10.3390/nano14131167.

本文引用的文献

1
Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains.
Science. 2015 Jan 30;347(6221):522-5. doi: 10.1126/science.aaa0472.
2
Compositional engineering of perovskite materials for high-performance solar cells.
Nature. 2015 Jan 22;517(7535):476-80. doi: 10.1038/nature14133. Epub 2015 Jan 7.
3
Solution-processed hybrid perovskite photodetectors with high detectivity.
Nat Commun. 2014 Nov 20;5:5404. doi: 10.1038/ncomms6404.
4
Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells.
Nat Nanotechnol. 2014 Nov;9(11):927-32. doi: 10.1038/nnano.2014.181. Epub 2014 Aug 31.
5
The light and shade of perovskite solar cells.
Nat Mater. 2014 Sep;13(9):838-42. doi: 10.1038/nmat4065.
6
Bright light-emitting diodes based on organometal halide perovskite.
Nat Nanotechnol. 2014 Sep;9(9):687-92. doi: 10.1038/nnano.2014.149. Epub 2014 Aug 3.
7
Photovoltaics. Interface engineering of highly efficient perovskite solar cells.
Science. 2014 Aug 1;345(6196):542-6. doi: 10.1126/science.1254050.
8
High charge carrier mobilities and lifetimes in organolead trihalide perovskites.
Adv Mater. 2014 Mar 12;26(10):1584-9. doi: 10.1002/adma.201305172.
9
Low-temperature solution-processed wavelength-tunable perovskites for lasing.
Nat Mater. 2014 May;13(5):476-80. doi: 10.1038/nmat3911. Epub 2014 Mar 16.
10
Development of an amorphous selenium-based photodetector driven by a diamond cold cathode.
Sensors (Basel). 2013 Oct 11;13(10):13744-78. doi: 10.3390/s131013744.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验