Suppr超能文献

通过尖峰时间自信息对细胞集合的神经编码。

Neural Coding of Cell Assemblies via Spike-Timing Self-Information.

机构信息

Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA, USA.

The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Province Academy of Science and Technology, Xi-Shuang-Ban-Na Prefecture, Yunnan, China.

出版信息

Cereb Cortex. 2018 Jul 1;28(7):2563-2576. doi: 10.1093/cercor/bhy081.

Abstract

Cracking brain's neural code is of general interest. In contrast to the traditional view that enormous spike variability in resting states and stimulus-triggered responses reflects noise, here, we examine the "Neural Self-Information Theory" that the interspike-interval (ISI), or the silence-duration between 2 adjoining spikes, carries self-information that is inversely proportional to its variability-probability. Specifically, higher-probability ISIs convey minimal information because they reflect the ground state, whereas lower-probability ISIs carry more information, in the form of "positive" or "negative surprisals," signifying the excitatory or inhibitory shifts from the ground state, respectively. These surprisals serve as the quanta of information to construct temporally coordinated cell-assembly ternary codes representing real-time cognitions. Accordingly, we devised a general decoding method and unbiasedly uncovered 15 cell assemblies underlying different sleep cycles, fear-memory experiences, spatial navigation, and 5-choice serial-reaction time (5CSRT) visual-discrimination behaviors. We further revealed that robust cell-assembly codes were generated by ISI surprisals constituted of ~20% of the skewed ISI gamma-distribution tails, conforming to the "Pareto Principle" that specifies, for many events-including communication-roughly 80% of the output or consequences come from 20% of the input or causes. These results demonstrate that real-time neural coding arises from the temporal assembly of neural-clique members via silence variability-based self-information codes.

摘要

破解大脑的神经密码具有普遍意义。与传统观点相反,传统观点认为静息状态和刺激触发响应中的大量尖峰变异性反映了噪声,而在这里,我们研究了“神经自信息理论”,即尖峰间隔(ISI)或两个相邻尖峰之间的沉默持续时间,携带与其变异性概率成反比的自信息。具体来说,更高概率的 ISI 传递的信息量最小,因为它们反映了基态,而更低概率的 ISI 携带更多信息,以“正”或“负”意外的形式表示分别来自基态的兴奋性或抑制性转变。这些意外作为信息的量子,构建了时间协调的细胞集合三元码,代表实时认知。因此,我们设计了一种通用的解码方法,并公正地揭示了不同睡眠周期、恐惧记忆体验、空间导航和 5 选择序列反应时间(5CSRT)视觉辨别行为背后的 15 个细胞集合。我们进一步揭示了强大的细胞集合代码是由构成 ISI 伽马分布尾部的 ~20%的倾斜 ISI 意外产生的,符合“帕累托原则”,该原则规定,对于包括通信在内的许多事件,大约 80%的输出或后果来自 20%的输入或原因。这些结果表明,实时神经编码是通过基于沉默变异性的自信息码通过神经小团体成员的时间组装产生的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f67/5998964/618ff6975637/bhy081f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验