Suppr超能文献

铜绿假单胞菌对抗黏菌素反应的基因组代谢建模。

Genome-scale metabolic modeling of responses to polymyxins in Pseudomonas aeruginosa.

机构信息

Monash Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.

Faculty of Information Technology, Monash University, Melbourne 3800, Australia.

出版信息

Gigascience. 2018 Apr 1;7(4). doi: 10.1093/gigascience/giy021.

Abstract

BACKGROUND

Pseudomonas aeruginosa often causes multidrug-resistant infections in immunocompromised patients, and polymyxins are often used as the last-line therapy. Alarmingly, resistance to polymyxins has been increasingly reported worldwide recently. To rescue this last-resort class of antibiotics, it is necessary to systematically understand how P. aeruginosa alters its metabolism in response to polymyxin treatment, thereby facilitating the development of effective therapies. To this end, a genome-scale metabolic model (GSMM) was used to analyze bacterial metabolic changes at the systems level.

FINDINGS

A high-quality GSMM iPAO1 was constructed for P. aeruginosa PAO1 for antimicrobial pharmacological research. Model iPAO1 encompasses an additional periplasmic compartment and contains 3022 metabolites, 4265 reactions, and 1458 genes in total. Growth prediction on 190 carbon and 95 nitrogen sources achieved an accuracy of 89.1%, outperforming all reported P. aeruginosa models. Notably, prediction of the essential genes for growth achieved a high accuracy of 87.9%. Metabolic simulation showed that lipid A modifications associated with polymyxin resistance exert a limited impact on bacterial growth and metabolism but remarkably change the physiochemical properties of the outer membrane. Modeling with transcriptomics constraints revealed a broad range of metabolic responses to polymyxin treatment, including reduced biomass synthesis, upregulated amino acid catabolism, induced flux through the tricarboxylic acid cycle, and increased redox turnover.

CONCLUSIONS

Overall, iPAO1 represents the most comprehensive GSMM constructed to date for Pseudomonas. It provides a powerful systems pharmacology platform for the elucidation of complex killing mechanisms of antibiotics.

摘要

背景

铜绿假单胞菌经常导致免疫功能低下患者发生多种药物耐药感染,而黏菌素通常被用作最后一线治疗药物。令人震惊的是,最近世界各地越来越多地报道了对黏菌素的耐药性。为了挽救这最后一类抗生素,有必要系统地了解铜绿假单胞菌如何改变其代谢以应对黏菌素治疗,从而促进有效治疗方法的开发。为此,使用基因组规模代谢模型 (GSMM) 从系统水平分析细菌代谢变化。

结果

构建了用于抗菌药理学研究的铜绿假单胞菌 PAO1 的高质量 GSMM iPAO1。模型 iPAO1 包含一个额外的周质隔室,总共包含 3022 种代谢物、4265 种反应和 1458 种基因。对 190 种碳源和 95 种氮源的生长预测准确率达到 89.1%,优于所有报道的铜绿假单胞菌模型。值得注意的是,对生长必需基因的预测准确率高达 87.9%。代谢模拟表明,与黏菌素耐药相关的脂 A 修饰对细菌生长和代谢的影响有限,但显著改变了外膜的物理化学性质。转录组学约束建模揭示了对黏菌素处理的广泛代谢反应,包括生物量合成减少、氨基酸分解代谢上调、三羧酸循环通量增加和氧化还原周转率增加。

结论

总体而言,iPAO1 是迄今为止为铜绿假单胞菌构建的最全面的 GSMM。它为阐明抗生素复杂的杀菌机制提供了一个强大的系统药理学平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85a2/6333913/4b5d1e19b320/giy021fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验