Gajdoš Martin, Výtvarová Eva, Fousek Jan, Lamoš Martin, Mikl Michal
Multimodal and Functional Neuroimaging, CEITEC, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
Faculty of Informatics, Masaryk University, Brno, Czech Republic.
Brain Topogr. 2018 Sep;31(5):767-779. doi: 10.1007/s10548-018-0647-6. Epub 2018 Apr 24.
Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas template completely; they are often spatially constrained due to the physical limitations of MR sequence settings, the inter-individual variability in brain shape, etc. When using a parcellation template, many regions are not completely covered by actual data. This paper addresses the issue of the area coverage required in real data in order to reliably estimate the representative signal and the influence of this kind of data loss on network analysis metrics. We demonstrate this issue on four datasets using four different widely used parcellation templates. We used two erosion approaches to simulate data loss on the whole-brain level and the ROI-specific level. Our results show that changes in ROI coverage have a systematic influence on network measures. Based on the results of our analysis, we recommend controlling the ROI coverage and retaining at least 60% of the area in order to ensure at least 80% of explained variance of the original signal.
基于脑区划分的方法是功能磁共振成像数据分析的重要组成部分。它们是在结构或功能上同质的区域中对数据进行分类的必要处理步骤。实际的功能磁共振成像数据集通常不能完全覆盖图谱模板;由于磁共振序列设置的物理限制、个体脑形状的差异等,它们在空间上往往受到限制。当使用脑区划分模板时,许多区域并未被实际数据完全覆盖。本文探讨了实际数据中为可靠估计代表性信号所需的面积覆盖率问题,以及这种数据缺失对网络分析指标的影响。我们使用四种不同的广泛使用的脑区划分模板,在四个数据集上展示了这个问题。我们使用两种侵蚀方法在全脑水平和特定感兴趣区域(ROI)水平上模拟数据缺失。我们的结果表明,ROI覆盖率的变化对网络测量有系统性影响。基于我们的分析结果,我们建议控制ROI覆盖率并保留至少60%的面积,以确保至少80%的原始信号可解释方差。