Mejia Amanda F, Nebel Mary Beth, Shou Haochang, Crainiceanu Ciprian M, Pekar James J, Mostofsky Stewart, Caffo Brian, Lindquist Martin A
Department of Biostatistics, Johns Hopkins University, USA.
Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA.
Neuroimage. 2015 May 15;112:14-29. doi: 10.1016/j.neuroimage.2015.02.042. Epub 2015 Feb 28.
A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often a necessary step for defining the network nodes used in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the inherent low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage-based estimators of such measures, allowing the noisy subject-specific estimator to "borrow strength" in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw inter-voxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. While we employ a standard spectral clustering approach, our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets - a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute resting-state fMRI scans from 20 subjects - we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw correlation estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor cortex by up to 30%.
最近,静息态功能磁共振成像(rsfMRI)的一个研究热点是将人类大脑划分为解剖学和功能上不同的感兴趣区域。例如,脑图谱划分通常是定义连接性研究中使用的网络节点的必要步骤。虽然传统上推理是在组级数据上进行的,但对单个受试者数据进行图谱划分的兴趣日益浓厚。然而,由于rsfMRI数据固有的低信噪比,再加上扫描长度通常较短,这一过程颇具难度。大量的脑图谱划分方法采用聚类,聚类从体素之间的相似性或距离度量开始。这项工作的目标是使用基于收缩估计器来改进单个受试者图谱划分的可重复性,使有噪声的受试者特定估计器能够以有原则的方式从更多受试者群体中“借用力量”。我们提出了几种经验贝叶斯收缩估计器,并概述了在每个受试者没有多次扫描时的收缩方法。我们对原始体素间相关性估计进行收缩,并使用原始估计和收缩估计通过对体素进行聚类来生成图谱。虽然我们采用了标准的谱聚类方法,但我们提出的方法与聚类方法的选择无关,可作为任何聚类算法的预处理步骤。使用两个数据集——一个模拟数据集,其中真实图谱是已知的且针对特定受试者,以及一个重测数据集,由来自20名受试者的两次7分钟静息态fMRI扫描组成——我们表明,由收缩相关性估计产生的图谱比由原始相关性估计产生的图谱具有更高的可靠性和有效性。应用于重测数据表明,使用收缩估计器可使运动皮层特定受试者图谱划分的可重复性提高多达30%。