Suppr超能文献

用于高效CO电还原和锌-CO电池的石墨共轭镍酞菁

Graphite conjugated nickel phthalocyanine for efficient CO electroreduction and Zn-CO batteries.

作者信息

Han Jingwei, Xu Qiang, Tian Fengkun, Sun Hai, Qi Yuanyuan, Zhang Guodong, Qin Jun-Sheng, Rao Heng

机构信息

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China

School of Chemistry and Chemical Engineering, Yangzhou University Siwangting Road 180 Yangzhou P. R. China.

出版信息

Chem Sci. 2024 Aug 30;15(38):15670-8. doi: 10.1039/d4sc02682a.

Abstract

The linking chemistry between molecular catalysts and substrates is a crucial challenge for enhancing electrocatalytic performance. Herein, we elucidate the influence of various immobilization methods of amino-substituted Ni phthalocyanine catalysts on their electrocatalytic CO reduction reaction (eCORR) activity. A graphite-conjugated Ni phthalocyanine, Ni(NH)Pc-GC, demonstrates remarkable electrocatalytic performance both in H-type and flow cells. infrared spectroscopy and theoretical calculations reveal that the graphite conjugation, through strong electronic coupling, increases the electron density of the active site, reduces the adsorption energy barrier of *COOH, and enhances the catalytic performance. As the cathode catalyst, Ni(NH)Pc-GC also displays remarkable charge-discharge cycle stability of over 50 hours in a Zn-CO battery. These findings underscore the significance of immobilization methods and highlight the potential for further advancements in eCORR.

摘要

分子催化剂与底物之间的连接化学是提高电催化性能的关键挑战。在此,我们阐明了氨基取代的镍酞菁催化剂的各种固定方法对其电催化CO还原反应(eCORR)活性的影响。一种石墨共轭镍酞菁Ni(NH)Pc-GC在H型电池和流通池中均表现出卓越的电催化性能。红外光谱和理论计算表明,石墨共轭通过强电子耦合增加了活性位点的电子密度,降低了*COOH的吸附能垒,并提高了催化性能。作为阴极催化剂,Ni(NH)Pc-GC在锌-CO电池中也表现出超过50小时的出色充放电循环稳定性。这些发现强调了固定方法的重要性,并突出了eCORR进一步发展的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28dd/11445742/c90997f240f6/d4sc02682a-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验