Suppr超能文献

理性元推理与认知控制的可塑性。

Rational metareasoning and the plasticity of cognitive control.

机构信息

Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America.

Brown Institute for Brain Science, Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.

出版信息

PLoS Comput Biol. 2018 Apr 25;14(4):e1006043. doi: 10.1371/journal.pcbi.1006043. eCollection 2018 Apr.

Abstract

The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people's ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.

摘要

人类大脑具有令人印象深刻的能力,可以根据高级目标调整信息处理方式。虽然众所周知,这些认知控制技能具有可塑造性,可以通过训练来提高,但背后的可塑性机制还不是很清楚。在这里,我们开发并评估了一种模型,用于了解人们如何学习何时施加认知控制、使用哪种控制过程以及施加多少努力。我们从一个一般理论中得出这个模型,根据这个理论,认知控制的功能是选择和配置神经网络路径,以便在有限的时间和计算资源内实现最佳利用。我们的“习得控制价值”模型的核心思想是,人们使用强化学习根据刺激特征来预测不同类型和强度的候选控制信号的价值。这个模型正确地预测了在视觉注意力实验和 Stroop 及 Flanker 范式中的干扰控制的四个实验中观察到的自适应控制需求行为的学习和转移效应。此外,我们的模型比联想学习模型和赢留输移模型更能显著地解释这些发现。我们的研究结果阐明了学习和经验如何塑造人们自适应地控制自己的思维和行为的能力和倾向。我们最后预测了在哪些情况下这些学习机制可能导致自我控制失败。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cce/5937797/40c33bbd934b/pcbi.1006043.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验