Suppr超能文献

通过时间结构自动学习预测模型进行的纵向基因型-表型关联研究

Longitudinal Genotype-Phenotype Association Study via Temporal Structure Auto-Learning Predictive Model.

作者信息

Wang Xiaoqian, Yan Jingwen, Yao Xiaohui, Kim Sungeun, Nho Kwangsik, Risacher Shannon L, Saykin Andrew J, Shen Li, Huang Heng

机构信息

Computer Science & Engineering, University of Texas at Arlington, TX, 76019, USA.

Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.

出版信息

Res Comput Mol Biol. 2017 May;10229:287-302. doi: 10.1007/978-3-319-56970-3_18. Epub 2017 Apr 12.

Abstract

With rapid progress in high-throughput genotyping and neuroimaging, imaging genetics has gained significant attention in the research of complex brain disorders, such as Alzheimer's Disease (AD). The genotype-phenotype association study using imaging genetic data has the potential to reveal genetic basis and biological mechanism of brain structure and function. AD is a progressive neurodegenerative disease, thus, it is crucial to look into the relations between SNPs and longitudinal variations of neuroimaging phenotypes. Although some machine learning models were newly presented to capture the longitudinal patterns in genotype-phenotype association study, most of them required fixed longitudinal structures of prediction tasks and could not automatically learn the interrelations among longitudinal prediction tasks. To address this challenge, we proposed a novel temporal structure auto-learning model to automatically uncover longitudinal genotype-phenotype interrelations and utilized such interrelated structures to enhance phenotype prediction in the meantime. We conducted longitudinal phenotype prediction experiments on the ADNI cohort including 3,123 SNPs and 2 types of biomarkers, VBM and FreeSurfer. Empirical results demonstrated advantages of our proposed model over the counterparts. Moreover, available literature was identified for our top selected SNPs, which demonstrated the rationality of our prediction results. An executable program is available online at https://github.com/littleq1991/sparse_lowRank_regression.

摘要

随着高通量基因分型和神经影像学的快速发展,影像遗传学在阿尔茨海默病(AD)等复杂脑部疾病的研究中受到了广泛关注。利用影像遗传数据进行的基因型-表型关联研究有潜力揭示脑结构和功能的遗传基础及生物学机制。AD是一种进行性神经退行性疾病,因此,研究单核苷酸多态性(SNPs)与神经影像表型纵向变化之间的关系至关重要。尽管最近提出了一些机器学习模型来捕捉基因型-表型关联研究中的纵向模式,但其中大多数需要预测任务具有固定的纵向结构,无法自动学习纵向预测任务之间的相互关系。为应对这一挑战,我们提出了一种新颖的时间结构自动学习模型,以自动揭示纵向基因型-表型的相互关系,并同时利用这种相互关联的结构来增强表型预测。我们在ADNI队列上进行了纵向表型预测实验,该队列包含3123个SNPs和两种生物标志物,即体素形态学测量(VBM)和FreeSurfer。实证结果表明我们提出的模型优于同类模型。此外,我们还为顶级选择的SNPs找到了相关文献,这证明了我们预测结果的合理性。可在https://github.com/littleq1991/sparse_lowRank_regression在线获取可执行程序。

相似文献

本文引用的文献

1
2016 Alzheimer's disease facts and figures.2016 年阿尔茨海默病事实和数据。
Alzheimers Dement. 2016 Apr;12(4):459-509. doi: 10.1016/j.jalz.2016.03.001.
2
MS4A Cluster in Alzheimer's Disease.阿尔茨海默病中的MS4A基因簇
Mol Neurobiol. 2015;51(3):1240-8. doi: 10.1007/s12035-014-8800-z. Epub 2014 Jul 1.
3
Multi-Stage Multi-Task Feature Learning.多阶段多任务特征学习
Adv Neural Inf Process Syst. 2013 Oct;14:2979-3010.
9
Effects of ApoE4 and maternal history of dementia on hippocampal atrophy.载脂蛋白 E4 及痴呆母亲病史对海马体萎缩的影响。
Neurobiol Aging. 2012 May;33(5):856-66. doi: 10.1016/j.neurobiolaging.2010.07.020. Epub 2010 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验