Wang Xiaoqian, Yan Jingwen, Yao Xiaohui, Kim Sungeun, Nho Kwangsik, Risacher Shannon L, Saykin Andrew J, Shen Li, Huang Heng
Computer Science & Engineering, University of Texas at Arlington, TX, 76019, USA.
Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
Res Comput Mol Biol. 2017 May;10229:287-302. doi: 10.1007/978-3-319-56970-3_18. Epub 2017 Apr 12.
With rapid progress in high-throughput genotyping and neuroimaging, imaging genetics has gained significant attention in the research of complex brain disorders, such as Alzheimer's Disease (AD). The genotype-phenotype association study using imaging genetic data has the potential to reveal genetic basis and biological mechanism of brain structure and function. AD is a progressive neurodegenerative disease, thus, it is crucial to look into the relations between SNPs and longitudinal variations of neuroimaging phenotypes. Although some machine learning models were newly presented to capture the longitudinal patterns in genotype-phenotype association study, most of them required fixed longitudinal structures of prediction tasks and could not automatically learn the interrelations among longitudinal prediction tasks. To address this challenge, we proposed a novel temporal structure auto-learning model to automatically uncover longitudinal genotype-phenotype interrelations and utilized such interrelated structures to enhance phenotype prediction in the meantime. We conducted longitudinal phenotype prediction experiments on the ADNI cohort including 3,123 SNPs and 2 types of biomarkers, VBM and FreeSurfer. Empirical results demonstrated advantages of our proposed model over the counterparts. Moreover, available literature was identified for our top selected SNPs, which demonstrated the rationality of our prediction results. An executable program is available online at https://github.com/littleq1991/sparse_lowRank_regression.
随着高通量基因分型和神经影像学的快速发展,影像遗传学在阿尔茨海默病(AD)等复杂脑部疾病的研究中受到了广泛关注。利用影像遗传数据进行的基因型-表型关联研究有潜力揭示脑结构和功能的遗传基础及生物学机制。AD是一种进行性神经退行性疾病,因此,研究单核苷酸多态性(SNPs)与神经影像表型纵向变化之间的关系至关重要。尽管最近提出了一些机器学习模型来捕捉基因型-表型关联研究中的纵向模式,但其中大多数需要预测任务具有固定的纵向结构,无法自动学习纵向预测任务之间的相互关系。为应对这一挑战,我们提出了一种新颖的时间结构自动学习模型,以自动揭示纵向基因型-表型的相互关系,并同时利用这种相互关联的结构来增强表型预测。我们在ADNI队列上进行了纵向表型预测实验,该队列包含3123个SNPs和两种生物标志物,即体素形态学测量(VBM)和FreeSurfer。实证结果表明我们提出的模型优于同类模型。此外,我们还为顶级选择的SNPs找到了相关文献,这证明了我们预测结果的合理性。可在https://github.com/littleq1991/sparse_lowRank_regression在线获取可执行程序。