Suppr超能文献

在单原子催化剂中最大化界面位点数量以实现伯醇的高选择性无溶剂氧化

Maximizing the Number of Interfacial Sites in Single-Atom Catalysts for the Highly Selective, Solvent-Free Oxidation of Primary Alcohols.

作者信息

Li Tianbo, Liu Fei, Tang Yan, Li Lin, Miao Shu, Su Yang, Zhang Junying, Huang Jiahui, Sun Hui, Haruta Masatake, Wang Aiqin, Qiao Botao, Li Jun, Zhang Tao

机构信息

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Angew Chem Int Ed Engl. 2018 Jun 25;57(26):7795-7799. doi: 10.1002/anie.201803272. Epub 2018 May 18.

Abstract

The solvent-free selective oxidation of alcohols to aldehydes with molecular oxygen is highly attractive yet challenging. Interfacial sites between a metal and an oxide support are crucial in determining the activity and selectivity of such heterogeneous catalysts. Herein, we demonstrate that the use of supported single-atom catalysts (SACs) leads to high activity and selectivity in this reaction. The significantly increased number of interfacial sites, resulting from the presence of individually dispersed metal atoms on the support, renders SACs one or two orders of magnitude more active than the corresponding nanoparticle (NP) catalysts. Lattice oxygen atoms activated at interfacial sites were found to be more selective than O activated on metal NPs in oxidizing the alcohol substrate. This work demonstrates for the first time that the number of interfacial sites is maximized in SACs, providing a new avenue for improving catalytic performance by developing appropriate SACs for alcohol oxidation and other reactions occurring at metal-support interfacial sites.

摘要

利用分子氧将醇无溶剂选择性氧化为醛极具吸引力,但也具有挑战性。金属与氧化物载体之间的界面位点对于确定此类多相催化剂的活性和选择性至关重要。在此,我们证明使用负载型单原子催化剂(SAC)可使该反应具有高活性和选择性。由于载体上单个分散的金属原子的存在,界面位点数量显著增加,使得SAC的活性比相应的纳米颗粒(NP)催化剂高一个或两个数量级。发现在界面位点活化的晶格氧原子在氧化醇底物时比在金属NP上活化的O更具选择性。这项工作首次证明SAC中的界面位点数量达到最大化,为通过开发适用于醇氧化及其他在金属-载体界面位点发生的反应的SAC来提高催化性能提供了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验