Suppr超能文献

基于多元聚类的多因子降维分析方法识别多个定量表型的遗传交互作用。

Multivariate Cluster-Based Multifactor Dimensionality Reduction to Identify Genetic Interactions for Multiple Quantitative Phenotypes.

机构信息

Department of Statistics, Korea University, Seoul,02841, Republic of Korea.

Department of Statistics, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

Biomed Res Int. 2019 Jul 11;2019:4578983. doi: 10.1155/2019/4578983. eCollection 2019.

Abstract

To understand the pathophysiology of complex diseases, including hypertension, diabetes, and autism, deleterious phenotypes are unlikely due to the effects of single genes, but rather, gene-gene interactions (GGIs), which are widely analyzed by multifactor dimensionality reduction (MDR). Early MDR methods mainly focused on binary traits. More recently, several extensions of MDR have been developed for analyzing various traits such as quantitative traits and survival times. Newer technologies, such as genome-wide association studies (GWAS), have now been developed for assessing multiple traits, to simultaneously identify genetic variants associated with various pathological phenotypes. It has also been well demonstrated that analyzing multiple traits has several advantages over single trait analysis. While there remains a need to find GGIs for multiple traits, such studies have become more difficult, due to a lack of novel methods and software. Herein, we propose a novel multi-CMDR method, by combining fuzzy clustering and MDR, to find GGIs for multiple traits. Multi-CMDR showed similar power to existing methods, when phenotypes followed bivariate normal distributions, and showed better power than others for skewed distributions. The validity of multi-CMDR was confirmed by analyzing real-life Korean GWAS data.

摘要

为了理解包括高血压、糖尿病和自闭症在内的复杂疾病的病理生理学,有害表型不太可能是由于单个基因的影响,而是由于基因-基因相互作用(GGI),这广泛通过多因素维度缩减(MDR)进行分析。早期的 MDR 方法主要集中在二元特征上。最近,已经开发了几种 MDR 的扩展,用于分析各种特征,如定量特征和生存时间。新技术,如全基因组关联研究(GWAS),现已开发用于评估多种特征,以同时识别与各种病理表型相关的遗传变异。也已经很好地证明了分析多个特征相对于单个特征分析具有几个优点。虽然仍然需要找到多个特征的 GGI,但由于缺乏新的方法和软件,此类研究变得更加困难。在此,我们提出了一种新的多-CMDR 方法,通过结合模糊聚类和 MDR,寻找多个特征的 GGI。当表型遵循双变量正态分布时,多-CMDR 与现有方法具有相似的功效,并且对于偏态分布,其功效优于其他方法。通过分析真实的韩国 GWAS 数据,验证了多-CMDR 的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c5a/6657635/0a5728615bbc/BMRI2019-4578983.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验