Nearing Grey S, Mocko David M, Peters-Lidard Christa D, Kumar Sujay V, Xia Youlong
NASA GSFC, Hydrological Sciences Laboratory; Greenbelt, MD 20771.
Science Applications International Corporation; McLean, VA 22102.
J Hydrometeorol. 2016 Mar;17(No 3):745-759. doi: 10.1175/JHM-D-15-0063.1. Epub 2016 Feb 12.
Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a "large-sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.
模型基准测试使我们能够将模型输入导致的模型预测不确定性与模型结构误差导致的不确定性区分开来。我们采用一种“大样本”方法(使用来自多个实地站点的数据)扩展了该方法,以测量由以下因素导致的预测不确定性:(i)强迫数据、(ii)模型参数和(iii)模型结构,并使用它来比较北美陆面数据同化系统第二阶段(NLDAS - 2)中四个陆面模型所做的土壤湿度状态和蒸散通量预测的效率。参数主导了土壤湿度估计中的不确定性,而强迫数据主导了蒸散估计中的不确定性;然而,这些模型本身仅利用了它们可用信息的一小部分。这意味着改进NLDAS - 2系统的所有三个组成部分具有巨大潜力。特别是,继续致力于完善参数图和查找表、强迫数据测量与处理以及陆面模型本身,有可能改进地表质量和能量平衡的估计。