Suppr超能文献

叶片和冠层反射光谱学在估算普通菜豆作物角斑病严重程度中的应用。

Leaf and canopy reflectance spectrometry applied to the estimation of angular leaf spot disease severity of common bean crops.

机构信息

Department of Signal Theory, Communications and Telematics Engineering, University of Valladolid, Valladolid, Spain.

Departamento de Pesquisa, Empresa de Pesquisa Agropecuária de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

出版信息

PLoS One. 2018 Apr 26;13(4):e0196072. doi: 10.1371/journal.pone.0196072. eCollection 2018.

Abstract

This study is aimed at (i) estimating the angular leaf spot (ALS) disease severity in common beans crops in Brazil, caused by the fungus Pseudocercospora griseola, employing leaf and canopy spectral reflectance data, (ii) evaluating the informative spectral regions in the detection, and (iii) comparing the estimation accuracy when the reflectance or the first derivative reflectance (FDR) is employed. Three data sets of useful spectral reflectance measurements in the 440 to 850 nm range were employed; measurements were taken over the leaves and canopy of bean crops with different levels of disease. A system based in Principal Component Analysis (PCA) and Artificial Neural Networks (ANN) was developed to estimate the disease severity from leaf and canopy hyperspectral reflectance spectra. Levels of disease to be taken as true reference were determined from the proportion of the total leaf surface covered by necrotic lesions on RGB images. When estimating ALS disease severity in bean crops by using hyperspectral reflectance spectrometry, this study suggests that (i) successful estimations with coefficients of determination up to 0.87 can be achieved if the spectra is acquired by the spectroradiometer in contact with the leaves, (ii) unsuccessful estimations are obtained when the spectra are acquired by the spectroradiometer from one or more meters above the crop, (iii) the red to near-infrared spectral region (630-850 nm) offers the same precision in the estimation as the blue to near-infrared spectral region (440-850), and (iv) neither significant improvements nor significant detriments are achieved when the input data to the estimation processing system are the FDR spectra, instead of the reflectance spectra.

摘要

本研究旨在

(i) 利用叶片和冠层光谱反射率数据,估算巴西由真菌 Pseudocercospora griseola 引起的普通豆科作物叶斑病(ALS)的严重程度;(ii) 评估检测中的信息丰富光谱区域;(iii) 比较使用反射率或一阶导数反射率(FDR)进行估计的精度。本研究使用了三个范围在 440 至 850nm 的有用光谱反射率测量数据集;对叶片和不同严重程度病害的豆科作物冠层进行了测量。开发了一种基于主成分分析(PCA)和人工神经网络(ANN)的系统,以从叶片和冠层高光谱反射率光谱中估算疾病严重程度。采用 RGB 图像上坏死病变覆盖叶片总面积的比例来确定作为真实参考的病害水平。当利用高光谱反射率光谱法估计豆科作物 ALS 严重程度时,本研究表明:(i) 如果光谱仪与叶片接触进行采集,可实现高达 0.87 的决定系数的成功估算;(ii) 当光谱仪从作物上方一米或更多处采集时,估算结果则不理想;(iii) 红至近红外光谱区(630-850nm)与蓝至近红外光谱区(440-850nm)在估计精度上相同;(iv) 在将估计处理系统的输入数据从反射率光谱改为 FDR 光谱时,既没有显著的改进,也没有显著的损害。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d49/5919580/9ecb0d85f598/pone.0196072.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验