Suppr超能文献

一种用于评估症状监测系统的方法框架:以英格兰为例的案例研究。

A methodological framework for the evaluation of syndromic surveillance systems: a case study of England.

机构信息

School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.

NIHR Health Protection Research Unit for Emergency Preparedness and Response, London, UK.

出版信息

BMC Public Health. 2018 Apr 24;18(1):544. doi: 10.1186/s12889-018-5422-9.

Abstract

BACKGROUND

Syndromic surveillance complements traditional public health surveillance by collecting and analysing health indicators in near real time. The rationale of syndromic surveillance is that it may detect health threats faster than traditional surveillance systems permitting more timely, and hence potentially more effective public health action. The effectiveness of syndromic surveillance largely relies on the methods used to detect aberrations. Very few studies have evaluated the performance of syndromic surveillance systems and consequently little is known about the types of events that such systems can and cannot detect.

METHODS

We introduce a framework for the evaluation of syndromic surveillance systems that can be used in any setting based upon the use of simulated scenarios. For a range of scenarios this allows the time and probability of detection to be determined and uncertainty is fully incorporated. In addition, we demonstrate how such a framework can model the benefits of increases in the number of centres reporting syndromic data and also determine the minimum size of outbreaks that can or cannot be detected. Here, we demonstrate its utility using simulations of national influenza outbreaks and localised outbreaks of cryptosporidiosis.

RESULTS

Influenza outbreaks are consistently detected with larger outbreaks being detected in a more timely manner. Small cryptosporidiosis outbreaks (<1000 symptomatic individuals) are unlikely to be detected. We also demonstrate the advantages of having multiple syndromic data streams (e.g. emergency attendance data, telephone helpline data, general practice consultation data) as different streams are able to detect different outbreak types with different efficacy (e.g. emergency attendance data are useful for the detection of pandemic influenza but not for outbreaks of cryptosporidiosis). We also highlight that for any one disease, the utility of data streams may vary geographically, and that the detection ability of syndromic surveillance varies seasonally (e.g. an influenza outbreak starting in July is detected sooner than one starting later in the year). We argue that our framework constitutes a useful tool for public health emergency preparedness in multiple settings.

CONCLUSIONS

The proposed framework allows the exhaustive evaluation of any syndromic surveillance system and constitutes a useful tool for emergency preparedness and response.

摘要

背景

综合征监测通过实时收集和分析健康指标来补充传统的公共卫生监测。综合征监测的基本原理是,它可以比传统监测系统更快地检测到健康威胁,从而允许更及时、更有效的公共卫生行动。综合征监测的有效性在很大程度上依赖于用于检测异常的方法。很少有研究评估综合征监测系统的性能,因此,对于这种系统能够和不能检测到的事件类型知之甚少。

方法

我们引入了一种评价综合征监测系统的框架,可以根据模拟场景的使用在任何环境中使用。对于一系列场景,可以确定检测的时间和概率,并充分纳入不确定性。此外,我们展示了如何使用这种框架来模拟增加报告综合征数据的中心数量的好处,还确定了可以或不能检测到的爆发的最小规模。在这里,我们使用国家流感爆发和局部隐孢子虫病爆发的模拟来演示其效用。

结果

流感爆发始终被检测到,较大的爆发被更及时地检测到。小的隐孢子虫病爆发(<1000 例症状患者)不太可能被检测到。我们还展示了具有多个综合征数据流(例如急诊就诊数据、电话热线数据、全科咨询数据)的优势,因为不同的数据流能够以不同的效果检测到不同的爆发类型(例如,急诊就诊数据对于大流行性流感的检测很有用,但对于隐孢子虫病的爆发则无用)。我们还强调,对于任何一种疾病,数据流的效用可能因地理位置而异,综合征监测的检测能力也可能随季节变化(例如,7 月开始的流感爆发比当年晚些时候开始的流感爆发更早被检测到)。我们认为,我们的框架构成了在多个环境中进行公共卫生应急准备的有用工具。

结论

所提出的框架允许对任何综合征监测系统进行详尽的评估,是应急准备和响应的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa3b/5921418/b975754aa83a/12889_2018_5422_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验