Department of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.
Science. 2018 Apr 27;360(6387):409-413. doi: 10.1126/science.aao1850.
Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.
多粒子纠缠是量子物理学的一个基本概念,仍然存在概念上的挑战。虽然原子系综的非经典态被用于提高量子计量学中的测量精度,但这些系统中的纠缠概念存在争议,因为只有通过集体测量才能观察到不可区分原子之间的相关性。在这里,我们使用高分辨率成像技术直接测量自旋压缩玻色-爱因斯坦凝聚体的空间分离部分之间的自旋相关性。我们观察到的纠缠强度足以进行爱因斯坦-波多尔斯基-罗森引导:我们可以根据另一个区域中的对应测量来预测一个空间区域中不交换可观测量的测量结果,其推断的不确定度积低于海森堡不确定性边界。这种方法可用于增强电磁场分布的纠缠成像和量子信息任务。