Scardulla Francesco, Agnese Valentina, Romano Giuseppe, Di Gesaro Gabriele, Sciacca Sergio, Bellavia Diego, Clemenza Francesco, Pilato Michele, Pasta Salvatore
Dipartimento dell'Innovazione Industriale e Digitale (DIID), Universita' di Palermo, Viale delle Scienze, Palermo, Italy.
Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy.
Cardiovasc Eng Technol. 2018 Sep;9(3):427-437. doi: 10.1007/s13239-018-0358-x. Epub 2018 Apr 26.
The risk of right ventricle (RV) failure remains a major contraindication for continuous-flow left ventricular assist device (CF-LVAD) implantation in patients with heart failure. It is therefore critical to identify the patients who will benefit from early intervention to avoid adverse outcomes. We sought to advance the computational modeling description of the mechanisms underlying RV failure in LVAD-supported patients. RV failure was studied by computational modeling of hemodynamic and cardiac mechanics using lumped-parameter and biventricular finite element (FE) analysis. Findings were validated by comparison of bi-dimensional speckle-tracking echocardiographic strain assessment of the RV free wall vs. patient-specific computational strain estimations, and by non-invasive lumped-based hemodynamic predictions vs. invasive right heart catheterization data. Correlation analysis revealed that lumped-derived RV cardiac output (R = 0.94) and RV stroke work index (R = 0.85) were in good agreement with catheterization data collected from 7 patients with CF-LVAD. Biventricular FE analysis showed abnormal motion of the interventricular septum towards the left ventricular free wall, suggesting impaired right heart mechanics. Good agreement between computationally predicted and echocardiographic measured longitudinal strains was found at basal (- 19.1 ± 3.0% for ECHO, and - 16.4 ± 3.2% for FEM), apical (- 20.0 ± 3.7% for ECHO, and - 17.4 ± 2.7% for FEM), and mid-level of the RV free wall (- 20.1 ± 5.9% for echo, and - 18.0 ± 5.4% for FEM). Simulation approach here presented could serve as a tool for less invasive and early diagnosis of the severity of RV failure in patients with LVAD, although future studies are needed to validate our findings against clinical outcomes.
右心室(RV)衰竭的风险仍然是心力衰竭患者植入连续流左心室辅助装置(CF-LVAD)的主要禁忌症。因此,识别那些将从早期干预中获益以避免不良后果的患者至关重要。我们试图推进对LVAD支持患者RV衰竭潜在机制的计算模型描述。通过使用集总参数和双心室有限元(FE)分析对血流动力学和心脏力学进行计算建模来研究RV衰竭。通过比较RV游离壁的二维散斑追踪超声心动图应变评估与患者特异性计算应变估计,以及通过基于集总的非侵入性血流动力学预测与侵入性右心导管检查数据来验证研究结果。相关性分析显示,集总得出的RV心输出量(R = 0.94)和RV每搏功指数(R = 0.85)与从7例CF-LVAD患者收集的导管检查数据高度一致。双心室FE分析显示室间隔向左心室游离壁的异常运动,提示右心力学受损。在基底(ECHO为-19.1±3.0%,FEM为-16.4±3.2%)、心尖(ECHO为-20.0±3.7%,FEM为-17.4±2.7%)和RV游离壁中层(回声为-20.1±5.9%,FEM为-18.0±5.4%)发现计算预测的纵向应变与超声心动图测量的纵向应变之间具有良好的一致性。这里提出的模拟方法可作为一种工具,用于对LVAD患者的RV衰竭严重程度进行侵入性较小的早期诊断,尽管未来还需要进行研究以根据临床结果验证我们的发现。