Suppr超能文献

评估风险因素对出生体重和孕周的影响:一种多水平联合建模方法。

Evaluating The Impact of Risk Factors on Birth Weight and Gestational Age: A Multilevel Joint Modeling Approach.

作者信息

Amini Payam, Moghimbeigi Abbas, Zayeri Farid, Mahjub Hossein, Maroufizadeh Saman, Omani-Samani Reza

机构信息

Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.

Modeling of Noncomunicable Disease Research Center, Department of Biostatistics, Faculty of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.Electronic Address:

出版信息

Int J Fertil Steril. 2018 Jul;12(2):106-113. doi: 10.22074/ijfs.2018.5330. Epub 2018 Mar 18.

Abstract

BACKGROUND

Abnormalities in birth weight and gestational age cause several adverse maternal and infant outcomes. Our study aims to determine the potential factors that affect birth weight and gestational age, and their association.

MATERIALS AND METHODS

We conducted this cross-sectional study of 4415 pregnant women in Tehran, Iran, from July 6-21, 2015. Joint multilevel multiple logistic regression was used in the analysis with demographic and obstetrical variables at the first level, and the hospitals at the second level.

RESULTS

We observed the following prevalence rates: preterm (5.5%), term (94%), and postterm (0.5%). Low birth weight (LBW) had a prevalence rate of 4.8%, whereas the prevalence rate for normal weight was 92.4, and 2.8% for macrosomia. Compared to term, older mother's age [odds ratio (OR)=1.04, 95% confidence interval (CI): 1.02-1.07], preeclampsia (OR=4.14, 95% CI: 2.71-6.31), multiple pregnancy (OR=18.04, 95% CI: 9.75- 33.38), and use of assisted reproductive technology (ART) (OR=2.47, 95% CI: 1.64-33.73) were associated with preterm birth. Better socioeconomic status (SES) was responsible for decreased odds for postterm birth compared to term birth (OR=0.53, 95% CI: 0.37-0.74). Cases with higher maternal body mass index (BMI) were 1.02 times more likely for macrosomia (95% CI: 1.01-1.04), and male infant sex (OR=1.78, 95% CI: 1.21-2.60). LBW was related to multiparity (OR=0.59, 95% CI: 0.42-0.82), multiple pregnancy (OR=17.35, 95% CI: 9.73-30.94), and preeclampsia (OR=3.36, 95% CI: 2.15-5.24).

CONCLUSION

Maternal age, SES, preeclampsia, multiple pregnancy, ART, higher maternal BMI, parity, and male infant sex were determined to be predictive variables for birth weight and gestational age after taking into consideration their association by using a joint multilevel multiple logistic regression model.

摘要

背景

出生体重和孕周异常会导致多种不良母婴结局。我们的研究旨在确定影响出生体重和孕周的潜在因素及其关联。

材料与方法

2015年7月6日至21日,我们在伊朗德黑兰对4415名孕妇进行了这项横断面研究。分析采用联合多水平多重逻辑回归,第一水平为人口统计学和产科变量,第二水平为医院。

结果

我们观察到以下患病率:早产(5.5%)、足月产(94%)和过期产(0.5%)。低出生体重(LBW)的患病率为4.8%,而正常体重的患病率为92.4%,巨大儿的患病率为2.8%。与足月产相比,母亲年龄较大[比值比(OR)=1.04,95%置信区间(CI):1.02 - 1.07]、先兆子痫(OR = 4.14,95% CI:2.71 - 6.31)、多胎妊娠(OR = 18.04,95% CI:9.75 - 33.38)以及使用辅助生殖技术(ART)(OR = 2.47,95% CI:1.64 - 3.73)与早产相关。与足月产相比,更好的社会经济地位(SES)导致过期产的几率降低(OR = 0.53,95% CI:0.37 - 0.74)。母亲体重指数(BMI)较高的病例发生巨大儿的可能性高1.02倍(95% CI:1.01 - 1.04),以及男婴(OR = 1.78,95% CI:1.21 - 2.60)。低出生体重与多产(OR = 0.59,95% CI:0.42 - 0.82)、多胎妊娠(OR = 17.35,95% CI:9.73 - 30.94)和先兆子痫(OR = 3.36,95% CI:2.15 - 5.24)有关。

结论

通过使用联合多水平多重逻辑回归模型考虑它们之间的关联后,确定母亲年龄、SES、先兆子痫、多胎妊娠、ART、较高的母亲BMI、产次和男婴性别为出生体重和孕周的预测变量。

相似文献

1
Evaluating The Impact of Risk Factors on Birth Weight and Gestational Age: A Multilevel Joint Modeling Approach.
Int J Fertil Steril. 2018 Jul;12(2):106-113. doi: 10.22074/ijfs.2018.5330. Epub 2018 Mar 18.
3
Low birthweight, preterm births and intrauterine growth retardation in relation to maternal smoking.
Paediatr Perinat Epidemiol. 1997 Apr;11(2):140-51. doi: 10.1046/j.1365-3016.1997.d01-17.x.
4
The Influence of Maternal BMI on Adverse Pregnancy Outcomes in Older Women.
Nutrients. 2020 Sep 16;12(9):2838. doi: 10.3390/nu12092838.
6
Excessive Maternal Weight and Diabetes Are Risk Factors for Macrosomia: A Cross-Sectional Study of 42,663 Pregnancies in Uruguay.
Front Endocrinol (Lausanne). 2020 Nov 3;11:588443. doi: 10.3389/fendo.2020.588443. eCollection 2020.

引用本文的文献

本文引用的文献

1
Semiparametric models for multilevel overdispersed count data with extra zeros.
Stat Methods Med Res. 2018 Apr;27(4):1187-1201. doi: 10.1177/0962280216657376. Epub 2016 Jul 7.
2
Preeclampsia and preterm delivery: A population-based case-control study.
Hypertens Pregnancy. 2016 Nov;35(4):510-519. doi: 10.1080/10641955.2016.1190846. Epub 2016 Jun 20.
3
Prevalence of abnormal birth weight and related factors in Northern region, Ghana.
BMC Pregnancy Childbirth. 2015 Dec 15;15:335. doi: 10.1186/s12884-015-0790-y.
5
Assisted reproductive technology and the risk of preterm birth among primiparas.
Fertil Steril. 2015 Apr;103(4):974-979.e1. doi: 10.1016/j.fertnstert.2015.01.015. Epub 2015 Feb 20.
7
Postterm pregnancy.
Facts Views Vis Obgyn. 2012;4(3):175-87.
8
Effects of socioeconomic position and clinical risk factors on spontaneous and iatrogenic preterm birth.
BMC Pregnancy Childbirth. 2014 Mar 27;14:117. doi: 10.1186/1471-2393-14-117.
9
Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: a WHO secondary analysis.
PLoS One. 2014 Mar 21;9(3):e91198. doi: 10.1371/journal.pone.0091198. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验