Suppr超能文献

[融合脑电图特征的弹性网络特征选择与分类]

[Selection and Classification of Elastic Net Feature with Fused Electroencephalogram Features].

作者信息

Li Jing, Wang Jinjia, Li Hui

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2016 Jun;33(3):413-9.

Abstract

Signal classification is a key of brain-computer interface(BCI).In this paper,we present a new method for classifying the electroencephalogram(EEG)signals of which the features are heterogeneous.This method is called wrapped elastic net feature selection and classification.Firstly,we used the joint application of time-domain statistic,power spectral density(PSD),common spatial pattern(CSP)and autoregressive(AR)model to extract high-dimensional fused features of the preprocessed EEG signals.Then we used the wrapped method for feature selection.We fitted the logistic regression model penalized with elastic net on the training data,and obtained the parameter estimation by coordinate descent method.Then we selected best feature subset by using 10-fold cross-validation.Finally,we classified the test sample using the trained model.Data used in the experiment were the EEG data from international BCI CompetitionⅣ.The results showed that the method proposed was suitable for fused feature selection with high-dimension.For identifying EEG signals,it is more effective and faster,and can single out a more relevant subset to obtain a relatively simple model.The average test accuracy reached 81.78%.

摘要

信号分类是脑机接口(BCI)的关键。本文提出了一种对特征异质的脑电图(EEG)信号进行分类的新方法。该方法称为包裹弹性网特征选择与分类。首先,我们联合应用时域统计、功率谱密度(PSD)、共同空间模式(CSP)和自回归(AR)模型来提取预处理后EEG信号的高维融合特征。然后我们使用包裹法进行特征选择。我们在训练数据上拟合用弹性网惩罚的逻辑回归模型,并通过坐标下降法获得参数估计。然后我们使用10折交叉验证选择最佳特征子集。最后,我们使用训练好的模型对测试样本进行分类。实验中使用的数据是来自国际脑机接口竞赛Ⅳ的EEG数据。结果表明,所提出的方法适用于高维融合特征选择。对于识别EEG信号,它更有效、更快,并且可以挑选出更相关的子集以获得相对简单的模型。平均测试准确率达到81.78%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验