Suppr超能文献

基于实时约束独立成分分析的同步脑电图-功能磁共振成像信号去噪研究

[Study of denoising of simultaneous electroencephalogram-functional magnetic resonance imaging signal based on real-time constrained independent components analysis].

作者信息

Wang Kai, Yan Hanying, Zou Ling

机构信息

School of Information Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R.China;Changzhou Key Laboratory of Biomedical Information Technology, Changzhou, Jiangsu 213164, P.R.China.

School of Information Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R.China;Changzhou Key Laboratory of Biomedical Information Technology, Changzhou, Jiangsu 213164,

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Feb 25;36(1):7-15. doi: 10.7507/1001-5515.201709066.

Abstract

Simultaneous recording of electroencephalogram (EEG)-functional magnetic resonance imaging (fMRI) plays an important role in scientific research and clinical field due to its high spatial and temporal resolution. However, the fusion results are seriously influenced by ballistocardiogram (BCG) artifacts under MRI environment. In this paper, we improve the off-line constrained independent components analysis using real-time technique (rt-cICA), which is applied to the simulated and real resting-state EEG data. The results show that for simulated data analysis, the value of error in signal amplitude (Er) obtained by rt-cICA method was obviously lower than the traditional methods such as average artifact subtraction ( <0.005). In real EEG data analysis, the improvement of normalized power spectrum (INPS) calculated by rt-cICA method was much higher than other methods ( <0.005). In conclusion, the novel method proposed by this paper lays the technical foundation for further research on the fusion model of EEG-fMRI.

摘要

脑电图(EEG)与功能磁共振成像(fMRI)同步记录因其高空间和时间分辨率在科研和临床领域发挥着重要作用。然而,在MRI环境下,融合结果受到心冲击图(BCG)伪影的严重影响。本文利用实时技术改进离线约束独立成分分析(rt-cICA),并将其应用于模拟和真实静息态EEG数据。结果表明,对于模拟数据分析,rt-cICA方法获得的信号幅度误差值(Er)明显低于传统方法,如平均伪影减法(<0.005)。在真实EEG数据分析中,rt-cICA方法计算的归一化功率谱改善(INPS)远高于其他方法(<0.005)。总之,本文提出的新方法为EEG-fMRI融合模型的进一步研究奠定了技术基础。

相似文献

2
Clustering-Constrained ICA for Ballistocardiogram Artifacts Removal in Simultaneous EEG-fMRI.
Front Neurosci. 2018 Feb 13;12:59. doi: 10.3389/fnins.2018.00059. eCollection 2018.
3
A real-time method to reduce ballistocardiogram artifacts from EEG during fMRI based on optimal basis sets (OBS).
Comput Methods Programs Biomed. 2016 Apr;127:114-25. doi: 10.1016/j.cmpb.2016.01.018. Epub 2016 Feb 10.
4
Ballistocardiogram artifact removal in simultaneous EEG-fMRI using generative adversarial network.
J Neurosci Methods. 2022 Apr 1;371:109498. doi: 10.1016/j.jneumeth.2022.109498. Epub 2022 Feb 12.
5
Comparison of BCG artifact removal methods for evoked responses in simultaneous EEG-fMRI.
J Neurosci Methods. 2015 Apr 30;245:137-46. doi: 10.1016/j.jneumeth.2015.02.018. Epub 2015 Feb 24.
6
Attenuation of artifacts in EEG signals measured inside an MRI scanner using constrained independent component analysis.
Physiol Meas. 2009 Apr;30(4):387-404. doi: 10.1088/0967-3334/30/4/004. Epub 2009 Mar 25.
8
Reference-free removal of EEG-fMRI ballistocardiogram artifacts with harmonic regression.
Neuroimage. 2016 Mar;128:398-412. doi: 10.1016/j.neuroimage.2015.06.088. Epub 2015 Jul 5.
9
Ballistocardiogram Artifact Reduction in Simultaneous EEG-fMRI Using Deep Learning.
IEEE Trans Biomed Eng. 2021 Jan;68(1):78-89. doi: 10.1109/TBME.2020.3004548. Epub 2020 Dec 21.
10
Ballistocardiogram artifact correction taking into account physiological signal preservation in simultaneous EEG-fMRI.
Neuroimage. 2016 Jul 15;135:45-63. doi: 10.1016/j.neuroimage.2016.03.034. Epub 2016 Mar 22.

本文引用的文献

2
Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.
Brain Behav. 2017 May 29;7(7):e00728. doi: 10.1002/brb3.728. eCollection 2017 Jul.
3
Real-time EEG artifact correction during fMRI using ICA.
J Neurosci Methods. 2016 Dec 1;274:27-37. doi: 10.1016/j.jneumeth.2016.09.012. Epub 2016 Sep 30.
4
Ballistocardiogram artifact correction taking into account physiological signal preservation in simultaneous EEG-fMRI.
Neuroimage. 2016 Jul 15;135:45-63. doi: 10.1016/j.neuroimage.2016.03.034. Epub 2016 Mar 22.
5
A real-time method to reduce ballistocardiogram artifacts from EEG during fMRI based on optimal basis sets (OBS).
Comput Methods Programs Biomed. 2016 Apr;127:114-25. doi: 10.1016/j.cmpb.2016.01.018. Epub 2016 Feb 10.
6
Reference-free removal of EEG-fMRI ballistocardiogram artifacts with harmonic regression.
Neuroimage. 2016 Mar;128:398-412. doi: 10.1016/j.neuroimage.2015.06.088. Epub 2015 Jul 5.
7
Separation and reconstruction of BCG and EEG signals during continuous EEG and fMRI recordings.
Front Neurosci. 2014 Jun 23;8:163. doi: 10.3389/fnins.2014.00163. eCollection 2014.
8
Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner.
Neuroimage. 2013 May 1;71:75-83. doi: 10.1016/j.neuroimage.2012.12.070. Epub 2013 Jan 8.
10
A comparative study of different artefact removal algorithms for EEG signals acquired during functional MRI.
Neuroimage. 2007 Oct 15;38(1):124-37. doi: 10.1016/j.neuroimage.2007.07.025. Epub 2007 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验