Suppr超能文献

开发一种预测花生挑战期间过敏反应严重程度的工具。

Development of a tool predicting severity of allergic reaction during peanut challenge.

机构信息

Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California; Department of Medicine, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University School of Medicine, Stanford, California.

Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California; School of Medicine, Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California.

出版信息

Ann Allergy Asthma Immunol. 2018 Jul;121(1):69-76.e2. doi: 10.1016/j.anai.2018.04.020. Epub 2018 Apr 27.

Abstract

BACKGROUND

Reliable prognostic markers for predicting severity of allergic reactions during oral food challenges (OFCs) have not been established.

OBJECTIVE

To develop a predictive algorithm of a food challenge severity score (CSS) to identify those at higher risk for severe reactions to a standardized peanut OFC.

METHODS

Medical history and allergy test results were obtained for 120 peanut allergic participants who underwent double-blind, placebo-controlled food challenges. Reactions were assigned a CSS between 1 and 6 based on cumulative tolerated dose and a severity clinical indicator. Demographic characteristics, clinical features, peanut component IgE values, and a basophil activation marker were considered in a multistep analysis to derive a flexible decision rule to understand risk during peanut of OFC.

RESULTS

A total of 18.3% participants had a severe reaction (CSS >4). The decision rule identified the following 3 variables (in order of importance) as predictors of reaction severity: ratio of percentage of CD63 stimulation with peanut to percentage of CD63 anti-IgE (CD63 ratio), history of exercise-induced asthma, and ratio of forced expiratory volume in 1 second to forced vital capacity (FEV/FVC) ratio. The CD63 ratio alone was a strong predictor of CSS (P < .001).

CONCLUSION

The CSS is a novel tool that combines dose thresholds and allergic reactions to understand risks associated with peanut OFCs. Laboratory values (CD63 ratio), along with clinical variables (exercise-induced asthma and FEV/FVC ratio) contribute to the predictive ability of the severity of reaction to peanut OFCs. Further testing of this decision rule is needed in a larger external data source before it can be considered outside research settings.

TRIAL REGISTRATION

ClinicalTrials.gov identifier: NCT02103270.

摘要

背景

目前尚未建立可靠的预测标志物来预测口服食物挑战(OFC)期间过敏反应的严重程度。

目的

制定食物挑战严重程度评分(CSS)的预测算法,以识别那些对标准化花生 OFC 严重反应风险较高的患者。

方法

对 120 名接受双盲、安慰剂对照食物挑战的花生过敏参与者进行了病史和过敏试验结果的采集。根据累积耐受剂量和严重临床指标,将反应分配为 1 至 6 分的 CSS。在多步骤分析中考虑了人口统计学特征、临床特征、花生成分 IgE 值和嗜碱性粒细胞激活标志物,以得出灵活的决策规则,了解 OFC 期间食用花生的风险。

结果

共有 18.3%的参与者出现严重反应(CSS>4)。决策规则确定了以下 3 个变量(按重要性顺序)作为反应严重程度的预测因子:花生与抗 IgE 刺激 CD63 的百分比比值(CD63 比值)、运动诱发哮喘史和 1 秒用力呼气量与用力肺活量的比值(FEV/FVC 比值)。单独的 CD63 比值是 CSS 的一个强有力的预测因子(P<0.001)。

结论

CSS 是一种结合剂量阈值和过敏反应的新型工具,用于了解与花生 OFC 相关的风险。实验室值(CD63 比值)以及临床变量(运动诱发哮喘和 FEV/FVC 比值)有助于预测花生 OFC 反应的严重程度。在将该决策规则应用于研究环境之外之前,需要在更大的外部数据源中进一步测试。

试验注册

ClinicalTrials.gov 标识符:NCT02103270。

相似文献

5
Predicting reactivity threshold in children with anaphylaxis to peanut.预测儿童花生过敏反应性阈值。
Clin Exp Allergy. 2018 Apr;48(4):415-423. doi: 10.1111/cea.13078. Epub 2018 Jan 25.
10
Basophil activation tests for the diagnosis of food allergy in children.用于诊断儿童食物过敏的嗜碱性粒细胞活化试验。
Clin Exp Allergy. 2009 Aug;39(8):1234-45. doi: 10.1111/j.1365-2222.2009.03292.x. Epub 2009 Jun 22.

引用本文的文献

7
Can artificial intelligence (AI) replace oral food challenge?人工智能(AI)能否取代口服食物激发试验?
J Allergy Clin Immunol. 2024 Mar;153(3):666-668. doi: 10.1016/j.jaci.2024.01.008. Epub 2024 Jan 21.
9
The Role of Biologics in the Treatment of Food Allergy.生物制剂在食物过敏治疗中的作用
J Allergy Clin Immunol Pract. 2024 Mar;12(3):562-568. doi: 10.1016/j.jaip.2023.11.032. Epub 2023 Nov 25.

本文引用的文献

2
Development of a prediction model for severe wheat allergy.严重小麦过敏预测模型的开发。
Pediatr Allergy Immunol. 2018 Feb;29(1):93-96. doi: 10.1111/pai.12806. Epub 2017 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验