Suppr超能文献

人工智能在过敏性疾病中的应用与研究进展

Application and research progress of artificial intelligence in allergic diseases.

作者信息

Tan Hong, Zhou Xuehua, Wu Huajie, Wang Min, Zhou Han, Qin Yue, Zhang Yun, Li Qiuhong, Luo Jianfeng, Su Hui, Sun Xin

机构信息

Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.

Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.

出版信息

Int J Med Sci. 2025 Apr 9;22(9):2088-2102. doi: 10.7150/ijms.105422. eCollection 2025.

Abstract

Artificial intelligence (AI), as a new technology that can assist or even replace some human functions, can collect and analyse large amounts of textual, visual and auditory data through techniques such as Reinforcement Learning, Machine Learning, Deep Learning and Natural Language Processing to establish complex, non-linear relationships and construct models. These can support doctors in disease prediction, diagnosis, treatment and management, and play a significant role in clinical risk prediction, improving the accuracy of disease diagnosis, assisting in the development of new drugs, and enabling precision treatment and personalised management. In recent years, AI has been used in the prediction, diagnosis, treatment and management of allergic diseases. Allergic diseases are a type of chronic non-communicable disease that have the potential to affect a number of different systems and organs, seriously impacting people's mental health and quality of life. In this paper, we focus on asthma and summarise the application and research progress of AI in asthma, atopic dermatitis, food allergies, allergic rhinitis and urticaria, from the perspectives of disease prediction, diagnosis, treatment and management. We also briefly analyse the advantages and limitations of various intelligent assistance methods, in order to provide a reference for research teams and medical staff.

摘要

人工智能(AI)作为一项能够协助甚至取代某些人类功能的新技术,可以通过强化学习、机器学习、深度学习和自然语言处理等技术收集和分析大量的文本、视觉和听觉数据,以建立复杂的非线性关系并构建模型。这些能够在疾病预测、诊断、治疗和管理方面为医生提供支持,并在临床风险预测、提高疾病诊断准确性、协助新药研发以及实现精准治疗和个性化管理中发挥重要作用。近年来,人工智能已被应用于过敏性疾病的预测、诊断、治疗和管理。过敏性疾病是一类慢性非传染性疾病,有可能影响多个不同的系统和器官,严重影响人们的心理健康和生活质量。在本文中,我们聚焦于哮喘,并从疾病预测、诊断、治疗和管理的角度总结人工智能在哮喘、特应性皮炎、食物过敏、过敏性鼻炎和荨麻疹中的应用及研究进展。我们还简要分析了各种智能辅助方法的优缺点,以便为研究团队和医务人员提供参考。

相似文献

1
Application and research progress of artificial intelligence in allergic diseases.
Int J Med Sci. 2025 Apr 9;22(9):2088-2102. doi: 10.7150/ijms.105422. eCollection 2025.
2
The Impact of Artificial Intelligence on Allergy Diagnosis and Treatment.
Curr Allergy Asthma Rep. 2024 Jul;24(7):361-372. doi: 10.1007/s11882-024-01152-y. Epub 2024 Jul 2.
3
Artificial intelligence in pediatric allergy research.
Eur J Pediatr. 2024 Dec 21;184(1):98. doi: 10.1007/s00431-024-05925-5.
4
Medical data science in rhinology: Background and implications for clinicians.
Am J Otolaryngol. 2020 Nov-Dec;41(6):102627. doi: 10.1016/j.amjoto.2020.102627. Epub 2020 Jul 2.
5
Advancements in artificial intelligence for atopic dermatitis: diagnosis, treatment, and patient management.
Ann Med. 2025 Dec;57(1):2484665. doi: 10.1080/07853890.2025.2484665. Epub 2025 Apr 8.
7
Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma.
Allergy. 2020 Dec;75(12):3039-3068. doi: 10.1111/all.14582. Epub 2020 Sep 30.
8
[Recommendations for the management of the child with allergic diseases at school].
Arch Argent Pediatr. 2015 Jun;113(3):276-85. doi: 10.5546/aap.2015.276.
9
Role of artificial intelligence, machine learning and deep learning models in corneal disorders - A narrative review.
J Fr Ophtalmol. 2024 Sep;47(7):104242. doi: 10.1016/j.jfo.2024.104242. Epub 2024 Jul 15.
10
Artificial Intelligence: Exploring the Future of Innovation in Allergy Immunology.
Curr Allergy Asthma Rep. 2023 Jun;23(6):351-362. doi: 10.1007/s11882-023-01084-z. Epub 2023 May 9.

本文引用的文献

2
Allergy Wheal and Erythema Segmentation Using Attention U-Net.
J Imaging Inform Med. 2025 Feb;38(1):467-475. doi: 10.1007/s10278-024-01075-0. Epub 2024 Aug 9.
5
Artificial intelligence applications in allergic rhinitis diagnosis: Focus on ensemble learning.
Asia Pac Allergy. 2024 Jun;14(2):56-62. doi: 10.5415/apallergy.0000000000000126. Epub 2023 Dec 18.
6
Evaluating ChatGPT's Performance in Answering Questions About Allergic Rhinitis and Chronic Rhinosinusitis.
Otolaryngol Head Neck Surg. 2024 Aug;171(2):571-577. doi: 10.1002/ohn.832. Epub 2024 May 26.
7
Novel Machine Learning Identifies 5 Asthma Phenotypes Using Cluster Analysis of Real-World Data.
J Allergy Clin Immunol Pract. 2024 Aug;12(8):2084-2091.e4. doi: 10.1016/j.jaip.2024.04.035. Epub 2024 Apr 27.
8
Identification of shared potential diagnostic markers in asthma and depression through bioinformatics analysis and machine learning.
Int Immunopharmacol. 2024 May 30;133:112064. doi: 10.1016/j.intimp.2024.112064. Epub 2024 Apr 11.
10
Evaluation of atopic dermatitis severity using artificial intelligence.
Narra J. 2023 Dec;3(3):e511. doi: 10.52225/narra.v3i3.511. Epub 2023 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验