Prahs P, Märker D, Mayer C, Helbig H
Klinik und Poliklinik für Augenheilkunde, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Deutschland.
Klinik für Augenheilkunde, Technische Universität München, München, Deutschland.
Ophthalmologe. 2018 Sep;115(9):722-727. doi: 10.1007/s00347-018-0708-y.
Significant progress has been made in artificial intelligence and computer vision research in recent years. Machine learning methods excel in a wide variety of tasks where sufficient data are available. We describe the application of a deep convolutional neural network for the prediction of treatment indication with anti-vascular endothelial growth factor (VEGF) medications based on central retinal optical coherence tomography (OCT) scans. The neural network classifier was trained with OCT images acquired during routine treatment at the University of Regensburg over the years 2008-2016. In over 95% of the cases the treatment indication was accurately predicted based on a singular OCT B scan without human intervention. Despite promising classification the results of deep learning techniques, should always be controlled by the treating physician because false classification can never be excluded due to the probabilistic nature of the method.
近年来,人工智能和计算机视觉研究取得了重大进展。机器学习方法在有足够数据的各种任务中表现出色。我们描述了一种基于中央视网膜光学相干断层扫描(OCT)扫描的深度卷积神经网络在预测抗血管内皮生长因子(VEGF)药物治疗指征方面的应用。该神经网络分类器使用2008年至2016年期间在雷根斯堡大学常规治疗期间获取的OCT图像进行训练。在超过95%的病例中,基于单次OCT B扫描无需人工干预即可准确预测治疗指征。尽管深度学习技术的分类结果很有前景,但由于该方法的概率性质,错误分类永远无法排除,因此其结果应由治疗医生进行控制。