Departamento de Biología Molecular and Centro Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
Division of Neurosciences, Pablo de Olavide University, 41013 Seville, Spain, and.
J Neurosci. 2018 May 30;38(22):5096-5110. doi: 10.1523/JNEUROSCI.3364-17.2018. Epub 2018 May 2.
Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In and -null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in and/or mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination. In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.
快速有效的信息神经传递需要正确的轴突髓鞘形成。髓鞘的改变会改变轴突传递电脉冲的能力,并导致病理状态。在中枢神经系统中,少突胶质细胞(OLs)对轴突进行髓鞘化,这是一个涉及多种细胞相互作用的复杂过程。然而,我们对协调正确髓鞘形成的机制知之甚少。在这里,我们证明 OLs 表达 R-Ras1 和 R-Ras2。使用雌性和雄性突变小鼠来删除这些蛋白质,我们发现,在缺乏一种或两种 GTPase 的小鼠中,PI3K/Akt 和 Erk1/2-MAPK 途径的激活较弱,这表明这两种蛋白质协调这两条途径的活性。R-Ras1 和/或 R-Ras2 的缺失减少了主要髓鞘化中枢神经系统束中的 OL 数量,并增加了未成熟 OL 的比例。在 和 -null 小鼠中,OLs 表现出异常的形态,并且不能正确分化为形成髓鞘的表型。较小的 OL 群体和异常的 OL 成熟诱导严重的少突胶质细胞髓鞘形成不足,导致 和/或 小鼠中的Ranvier 结变短。这些缺陷解释了我们在缺乏 R-Ras1 和 R-Ras2 时观察到的髓鞘化轴突传导速度较慢的原因。总之,这些结果表明,R-Ras1 和 R-Ras2 是上游元件,通过 PI3K/Akt 和 Erk1/2-MAPK 途径调节祖细胞向 OL 的存活和分化,以实现适当的髓鞘形成。在这项研究中,我们表明 R-Ras1 和 R-Ras2 在调节髓鞘形成中发挥重要作用,并通过协同激活 PI3K/Akt 和 Erk1/2-MAPK 信号来控制少突胶质细胞(OL)存活和分化的基本方面。缺乏 R-Ras1 和/或 R-Ras2 的小鼠表现出 OL 群体减少,未成熟 OL 的比例更高,解释了主要中枢神经系统束中观察到的少突胶质细胞髓鞘形成不足。电生理记录表明,在缺乏 R-Ras1 和 R-Ras2 的情况下,神经冲动的传导速度较慢。因此,R-Ras1 和 R-Ras2 是适当的轴突髓鞘形成和准确的神经传递所必需的。