Alcover-Sanchez Berta, Garcia-Martin Gonzalo, Escudero-Ramirez Juan, Gonzalez-Riano Carolina, Lorenzo Paz, Gimenez-Cassina Alfredo, Formentini Laura, de la Villa-Polo Pedro, Pereira Marta P, Wandosell Francisco, Cubelos Beatriz
Departamento de Biología Molecular and Centro Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, Madrid, Spain.
CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
Glia. 2021 Mar;69(3):619-637. doi: 10.1002/glia.23917. Epub 2020 Oct 3.
Fast synaptic transmission in vertebrates is critically dependent on myelin for insulation and metabolic support. Myelin is produced by oligodendrocytes (OLs) that maintain multilayered membrane compartments that wrap around axonal fibers. Alterations in myelination can therefore lead to severe pathologies such as multiple sclerosis. Given that hypomyelination disorders have complex etiologies, reproducing clinical symptoms of myelin diseases from a neurological perspective in animal models has been difficult. We recently reported that R-Ras1 and/or R-Ras2 mice, which lack GTPases essential for OL survival and differentiation processes, present different degrees of hypomyelination in the central nervous system with a compounded hypomyelination in double knockout (DKO) mice. Here, we discovered that the loss of R-Ras1 and/or R-Ras2 function is associated with aberrant myelinated axons with increased numbers of mitochondria, and a disrupted mitochondrial respiration that leads to increased reactive oxygen species levels. Consequently, aberrant myelinated axons are thinner with cytoskeletal phosphorylation patterns typical of axonal degeneration processes, characteristic of myelin diseases. Although we observed different levels of hypomyelination in a single mutant mouse, the combined loss of function in DKO mice lead to a compromised axonal integrity, triggering the loss of visual function. Our findings demonstrate that the loss of R-Ras function reproduces several characteristics of hypomyelinating diseases, and we therefore propose that R-Ras1 and R-Ras2 neurological models are valuable approaches for the study of these myelin pathologies.
脊椎动物中的快速突触传递严重依赖髓鞘提供绝缘和代谢支持。髓鞘由少突胶质细胞(OLs)产生,这些细胞维持围绕轴突纤维的多层膜结构。因此,髓鞘形成的改变会导致严重的疾病,如多发性硬化症。鉴于髓鞘形成不足疾病的病因复杂,从神经学角度在动物模型中重现髓鞘疾病的临床症状一直很困难。我们最近报道,缺乏OL存活和分化过程所必需的GTP酶的R-Ras1和/或R-Ras2小鼠,在中枢神经系统中表现出不同程度的髓鞘形成不足,双敲除(DKO)小鼠中存在复合性髓鞘形成不足。在这里,我们发现R-Ras1和/或R-Ras2功能的丧失与线粒体数量增加的异常髓鞘化轴突以及导致活性氧水平升高的线粒体呼吸紊乱有关。因此,异常髓鞘化轴突更细,具有轴突变性过程典型的细胞骨架磷酸化模式,这是髓鞘疾病的特征。尽管我们在单突变小鼠中观察到不同程度的髓鞘形成不足,但DKO小鼠中功能的联合丧失导致轴突完整性受损,引发视觉功能丧失。我们的研究结果表明,R-Ras功能的丧失重现了髓鞘形成不足疾病的几个特征,因此我们提出R-Ras1和R-Ras2神经学模型是研究这些髓鞘病理的有价值的方法。